bsc-leon-vatthauer/slides/sections/02_goals.tex

39 lines
No EOL
1.3 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\section{Implementation in Agda}
\begin{frame}[t, fragile]{Goals}
\begin{itemize}[<+->]
\item Formalize the delay monad categorically and show that it is..
\begin{itemize}
\item strong
\item commutative
\end{itemize}
\item Formalize K and show that it is..
\begin{itemize}
\item strong
\item commutative
\item an equational lifting monad
\end{itemize}
\item Take the category of setoids and show that $K$ instantiates to $D_\approx$
\end{itemize}
\end{frame}
\begin{frame}[t, fragile, blank]{Category Theory in Agda}{Setoid-enriched Categories}
\begin{minted}{agda}
record Category (o e : Level) : Set (suc (o ⊔ ⊔ e)) where
field
Obj : Set o
__ : Obj → Obj → Set
__ : ∀ {A B} → (A ⇒ B) → (A ⇒ B) → Set e
id : ∀ {A} → (A ⇒ A)
__ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
field
assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D}
→ (h ∘ g) ∘ f ≈ h ∘ (g ∘ f)
identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f
identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f
equiv : ∀ {A B} → IsEquivalence (__ {A} {B})
∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i
\end{minted}
\end{frame}