bsc-leon-vatthauer/slides/sections/02_goals.tex

39 lines
1.3 KiB
TeX
Raw Normal View History

2024-01-11 13:38:32 +01:00
\section{Implementation in Agda}
\begin{frame}[t, fragile]{Goals}
2024-01-20 17:57:43 +01:00
\begin{itemize}[<+->]
2024-01-18 19:10:09 +01:00
\item Formalize the delay monad categorically and show that it is..
\begin{itemize}
\item strong
\item commutative
\end{itemize}
\item Formalize K and show that it is..
\begin{itemize}
\item strong
\item commutative
\item an equational lifting monad
\end{itemize}
2024-01-20 17:57:43 +01:00
\item Take the category of setoids and show that $K$ instantiates to $D_\approx$
2024-01-11 13:38:32 +01:00
\end{itemize}
\end{frame}
2024-01-20 17:57:43 +01:00
\begin{frame}[t, fragile, blank]{Category Theory in Agda}{Setoid-enriched Categories}
\begin{minted}{agda}
record Category (o e : Level) : Set (suc (o ⊔ ⊔ e)) where
field
Obj : Set o
__ : Obj → Obj → Set
__ : ∀ {A B} → (A ⇒ B) → (A ⇒ B) → Set e
id : ∀ {A} → (A ⇒ A)
__ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
2024-01-11 13:38:32 +01:00
2024-01-20 17:57:43 +01:00
field
assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D}
→ (h ∘ g) ∘ f ≈ h ∘ (g ∘ f)
identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f
identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f
equiv : ∀ {A B} → IsEquivalence (__ {A} {B})
∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i
\end{minted}
2024-01-11 13:38:32 +01:00
\end{frame}