bsc-leon-vatthauer/slides/sections/02_goals.tex

27 lines
716 B
TeX
Raw Normal View History

2024-01-11 13:38:32 +01:00
\section{Implementation in Agda}
\begin{frame}[t, fragile]{Goals}
\begin{itemize}
2024-01-18 19:10:09 +01:00
\item Formalize the delay monad categorically and show that it is..
\begin{itemize}
\item strong
\item commutative
\end{itemize}
\item Formalize K and show that it is..
\begin{itemize}
\item strong
\item commutative
\item an equational lifting monad
\end{itemize}
\item Take the category of setoids and show that $K$ instantiates to $D$ quotiented by weak-bisimilarity
2024-01-11 13:38:32 +01:00
\end{itemize}
\end{frame}
\begin{frame}[t, fragile]{Category theory in Agda}
agda-categories
\end{frame}
2024-01-18 19:10:09 +01:00
\begin{frame}[t, fragile]{Resumee}
On doing category theory in agda
(pro/con)
2024-01-11 13:38:32 +01:00
\end{frame}