mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
27 lines
No EOL
716 B
TeX
27 lines
No EOL
716 B
TeX
\section{Implementation in Agda}
|
|
|
|
\begin{frame}[t, fragile]{Goals}
|
|
\begin{itemize}
|
|
\item Formalize the delay monad categorically and show that it is..
|
|
\begin{itemize}
|
|
\item strong
|
|
\item commutative
|
|
\end{itemize}
|
|
\item Formalize K and show that it is..
|
|
\begin{itemize}
|
|
\item strong
|
|
\item commutative
|
|
\item an equational lifting monad
|
|
\end{itemize}
|
|
\item Take the category of setoids and show that $K$ instantiates to $D$ quotiented by weak-bisimilarity
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}[t, fragile]{Category theory in Agda}
|
|
agda-categories
|
|
\end{frame}
|
|
|
|
\begin{frame}[t, fragile]{Resumee}
|
|
On doing category theory in agda
|
|
(pro/con)
|
|
\end{frame} |