mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
140 KiB
140 KiB
Summary
We work in an ambient category that
- is extensive (has finite coproducts and pullbacks along injections)
- is cartesian (has finite products, extensive + cartesian also gives a distributivity isomorphism)
- has a parametrized NNO ℕ
- has exponentials
X^ℕ
module Category.Ambient where record Ambient (o ℓ e : Level) : Set (suc o ⊔ suc ℓ ⊔ suc e) where field C : Category o ℓ e extensive : Extensive C cartesian : Cartesian C ℕ : ParametrizedNNO (record { U = C ; cartesian = cartesian }) -- _^ℕ : ∀ X → Exponential C (ParametrizedNNO.N ℕ) X cartesianCategory : CartesianCategory o ℓ e cartesianCategory = record { U = C ; cartesian = cartesian } open Category C renaming (id to idC) public open Extensive extensive public open Cocartesian cocartesian renaming (+-unique to []-unique) public open Cartesian cartesian public -- some helpers monoidal : Monoidal C monoidal = CartesianMonoidal.monoidal cartesian symmetric : Symmetric monoidal symmetric = symm C cartesian braided : Braided monoidal braided = Symmetric.braided symmetric open BinaryProducts products renaming (η to ⁂-η; g-η to ⁂-g-η; unique to ⟨⟩-unique; unique′ to ⟨⟩-unique′) public open ParametrizedNNO ℕ public renaming (η to pnno-η) open CartesianMonoidal cartesian using (⊤×A≅A; A×⊤≅A) public distributive : Distributive C distributive = Extensive×Cartesian⇒Distributive C extensive cartesian open Distributive distributive hiding (cartesian; cocartesian) public open M' C open HomReasoning open MR' C open Equiv open import Categories.Category.Distributive.Properties distributive public distribute₄ : ∀ {A B C D} → (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ {A + B} {C} {D} ≈ [ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹ distribute₄ = Iso⇒Epi C (IsIso.iso isIsoʳ) ((distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) ([ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹) (begin (((distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) ∘ distributeʳ) ≈⟨ ∘[] ⟩ [ (((distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) ∘ (i₁ ⁂ idC)) , (((distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) ∘ (i₂ ⁂ idC)) ] ≈⟨ []-cong₂ (pullʳ ((refl⟩∘⟨ (⁂-cong₂ refl (sym ([]-unique id-comm-sym id-comm-sym)))) ○ sym (distributeˡ⁻¹-natural i₁ idC idC))) (pullʳ (((refl⟩∘⟨ (⁂-cong₂ refl (sym ([]-unique id-comm-sym id-comm-sym)))) ○ sym (distributeˡ⁻¹-natural i₂ idC idC)))) ⟩ [ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ ((i₁ ⁂ idC) +₁ (i₁ ⁂ idC)) ∘ distributeˡ⁻¹ , (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ ((i₂ ⁂ idC) +₁ (i₂ ⁂ idC)) ∘ distributeˡ⁻¹ ] ≈⟨ []-cong₂ (pullˡ (+₁∘+₁ ○ +₁-cong₂ distributeʳ⁻¹-i₁ distributeʳ⁻¹-i₁)) (pullˡ (+₁∘+₁ ○ +₁-cong₂ distributeʳ⁻¹-i₂ distributeʳ⁻¹-i₂)) ⟩ [ (i₁ +₁ i₁) ∘ distributeˡ⁻¹ , (i₂ +₁ i₂) ∘ distributeˡ⁻¹ ] ≈˘⟨ []∘+₁ ⟩ ([ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹)) ≈˘⟨ pullʳ (cancelʳ (IsIso.isoˡ isIsoʳ)) ⟩ (([ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹) ∘ distributeʳ) ∎) distributeˡ⁻¹-assoc : ∀ {A B C D : Obj} → distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc ≈ (_≅_.to ×-assoc +₁ _≅_.to ×-assoc) ∘ distributeˡ⁻¹ {A × B} {C} {D} distributeˡ⁻¹-assoc {A} {B} {U} {D} = Iso⇒Epi C (IsIso.iso isIsoˡ) (distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc) ((_≅_.to ×-assoc +₁ _≅_.to ×-assoc) ∘ distributeˡ⁻¹) (begin (distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc) ∘ [ idC ⁂ i₁ , idC ⁂ i₂ ] ≈⟨ ∘[] ⟩ [ (distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc) ∘ (idC ⁂ i₁) , (distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc) ∘ (idC ⁂ i₂) ] ≈⟨ []-cong₂ (pullʳ (pullʳ ⟨⟩∘)) (pullʳ (pullʳ ⟨⟩∘)) ⟩ [ distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ ⟨ (π₁ ∘ π₁) ∘ (idC ⁂ i₁) , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (idC ⁂ i₁) ⟩ , distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ ⟨ (π₁ ∘ π₁) ∘ (idC ⁂ i₂) , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (idC ⁂ i₂) ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ ⁂∘⟨⟩) (refl⟩∘⟨ ⁂∘⟨⟩) ⟩ [ distributeˡ⁻¹ ∘ ⟨ idC ∘ (π₁ ∘ π₁) ∘ (idC ⁂ i₁) , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (idC ⁂ i₁) ⟩ , distributeˡ⁻¹ ∘ ⟨ idC ∘ (π₁ ∘ π₁) ∘ (idC ⁂ i₂) , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (idC ⁂ i₂) ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ identityˡ refl)) (refl⟩∘⟨ (⟨⟩-cong₂ identityˡ refl)) ⟩ [ distributeˡ⁻¹ ∘ ⟨ (π₁ ∘ π₁) ∘ (idC ⁂ i₁) , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (idC ⁂ i₁) ⟩ , distributeˡ⁻¹ ∘ ⟨ (π₁ ∘ π₁) ∘ (idC ⁂ i₂) , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (idC ⁂ i₂) ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) (refl⟩∘⟨ ⟨⟩∘))) (refl⟩∘⟨ ⟨⟩-cong₂ (pullʳ π₁∘⁂) (refl⟩∘⟨ ⟨⟩∘)) ⟩ [ distributeˡ⁻¹ ∘ ⟨ π₁ ∘ idC ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ (π₂ ∘ π₁) ∘ (idC ⁂ i₁) , π₂ ∘ (idC ⁂ i₁) ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ π₁ ∘ idC ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ (π₂ ∘ π₁) ∘ (idC ⁂ i₂) , π₂ ∘ (idC ⁂ i₂) ⟩ ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂)))) (refl⟩∘⟨ (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂)))) ⟩ [ distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ idC ∘ π₁ , i₁ ∘ π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ idC ∘ π₁ , i₂ ∘ π₂ ⟩ ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ ⟨⟩-cong₂ refl (refl⟩∘⟨ ⟨⟩-cong₂ ((refl⟩∘⟨ identityˡ) ○ sym identityˡ) refl)) (refl⟩∘⟨ ⟨⟩-cong₂ refl (refl⟩∘⟨ ⟨⟩-cong₂ ((refl⟩∘⟨ identityˡ) ○ sym identityˡ) refl)) ⟩ [ distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ idC ∘ π₂ ∘ π₁ , i₁ ∘ π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ idC ∘ π₂ ∘ π₁ , i₂ ∘ π₂ ⟩ ⟩ ] ≈˘⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ ⁂∘⟨⟩))) (refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ ⁂∘⟨⟩))) ⟩ [ distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ (idC ⁂ i₁) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ (idC ⁂ i₂) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (pullˡ distributeˡ⁻¹-i₁))) (refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (pullˡ distributeˡ⁻¹-i₂))) ⟩ [ distributeˡ⁻¹ ∘ ⟨ idC ∘ π₁ ∘ π₁ , i₁ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ idC ∘ π₁ ∘ π₁ , i₂ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ] ≈˘⟨ []-cong₂ (refl⟩∘⟨ ⁂∘⟨⟩) (refl⟩∘⟨ ⁂∘⟨⟩) ⟩ [ distributeˡ⁻¹ ∘ (idC ⁂ i₁) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ (idC ⁂ i₂) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ] ≈⟨ []-cong₂ (pullˡ distributeˡ⁻¹-i₁) (pullˡ distributeˡ⁻¹-i₂) ⟩ (_≅_.to ×-assoc +₁ _≅_.to ×-assoc) ≈˘⟨ cancelʳ (IsIso.isoˡ isIsoˡ) ⟩ ((_≅_.to ×-assoc +₁ _≅_.to ×-assoc) ∘ distributeˡ⁻¹) ∘ distributeˡ ∎) module M = M' module MR = MR' module MP = MP' -- TODO should be in agda-categories Kleisli⇒Monad⇒Kleisli : ∀ (K : KleisliTriple C) {X Y} (f : X ⇒ RMonad.F₀ K Y) → RMonad.extend (Monad⇒Kleisli C (Kleisli⇒Monad C K)) f ≈ RMonad.extend K f Kleisli⇒Monad⇒Kleisli K f = begin extend idC ∘ extend (unit ∘ f) ≈⟨ sym kleisli.assoc ⟩ extend (extend idC ∘ unit ∘ f) ≈⟨ extend-≈ (pullˡ kleisli.identityʳ) ⟩ extend (idC ∘ f) ≈⟨ extend-≈ (identityˡ) ⟩ extend f ∎ where module kleisli = RMonad K open kleisli using (unit; extend; extend-≈) Monad⇒Kleisli⇒Monad : ∀ (M : Monad C) {X Y} (f : X ⇒ Monad.F.₀ M Y) → Monad.F.₁ (Kleisli⇒Monad C (Monad⇒Kleisli C M)) f ≈ Monad.F.₁ M f Monad⇒Kleisli⇒Monad M f = begin μ.η _ ∘ F.₁ (η.η _ ∘ f) ≈⟨ refl⟩∘⟨ F.homomorphism ⟩ μ.η _ ∘ F.₁ (η.η _) ∘ F.₁ f ≈⟨ cancelˡ monad.identityˡ ⟩ F.₁ f ∎ where module monad = Monad M open monad using (F; η; μ) F₁⇒extend : ∀ (M : Monad C) {X Y} (f : X ⇒ Y) → RMonad.extend (Monad⇒Kleisli C M) (RMonad.unit (Monad⇒Kleisli C M) ∘ f) ≈ Monad.F.₁ M f F₁⇒extend M f = begin μ.η _ ∘ F.₁ (η.η _ ∘ f) ≈⟨ refl⟩∘⟨ F.homomorphism ⟩ μ.η _ ∘ F.₁ (η.η _) ∘ F.₁ f ≈⟨ cancelˡ m-identityˡ ⟩ F.₁ f ∎ where open Monad M using (F; η; μ) renaming (identityˡ to m-identityˡ) extend∘F₁ : ∀ (M : Monad C) {X Y Z} (f : Y ⇒ Monad.F.₀ M Z) (g : X ⇒ Y) → RMonad.extend (Monad⇒Kleisli C M) f ∘ Monad.F.₁ M g ≈ RMonad.extend (Monad⇒Kleisli C M) (f ∘ g) extend∘F₁ M f g = begin extend f ∘ F.₁ g ≈⟨ (refl⟩∘⟨ sym (F₁⇒extend M g)) ⟩ extend f ∘ extend (unit ∘ g) ≈⟨ k-sym-assoc ⟩ extend (extend f ∘ unit ∘ g) ≈⟨ extend-≈ (pullˡ k-identityʳ) ⟩ extend (f ∘ g) ∎ where open Monad M using (F) open RMonad (Monad⇒Kleisli C M) using (extend; unit; extend-≈) renaming (sym-assoc to k-sym-assoc; identityʳ to k-identityʳ) ∇ : ∀ {X} → X + X ⇒ X ∇ = [ idC , idC ]