bsc-leon-vatthauer/agda/bsc-thesis/Monad.Instance.K.Strong.md
2024-02-09 17:53:52 +01:00

362 KiB
Raw Blame History

module Monad.Instance.K.Strong {o  e} (ambient : Ambient o  e) (MK : MIK.MonadK ambient) where
  open Ambient ambient
  open import Category.Construction.ElgotAlgebras cocartesian
  open import Algebra.Elgot cocartesian
  open import Algebra.Elgot.Free cocartesian using (FreeElgotAlgebra; elgotForgetfulF)
  open import Algebra.Elgot.Stable distributive using (IsStableFreeElgotAlgebra)

  open MIK ambient
  open MonadK MK
  open Equiv
  open MR C
  open M C
  open HomReasoning

The monad K is strong

K is a strong monad with the strength defined as η ♯, where ♯ is the operator we get from stability. Verifying the axioms of strength is straightforward once you know the procedure, since the proofs are all very similar.

For example the proof of identityˡ i.e. K₁ π₂ ∘ τ ≈ π₂ goes as follows:

  1. find a morphism f such that K₁ π₂ ∘ τ ≈ f ♯ ≈ π₂
  2. show that K₁ π₂ ∘ τ is iteration preserving and satisfies the stabiltiy law
  3. show that π₂ is iteration preserving and satisfies the stabiltiy law

=> by uniqueness of f ♯ we are done

The following diagram demonstrates this:

  -- we use properties of the kleisli representation as well as the 'normal' monad representation
  open kleisliK using (extend)
  open monadK using (μ)

  -- defining τ
  private
    -- some helper definitions to make our life easier
    η = λ Z  FreeObject.η (freealgebras Z)
    _♯ = λ {A X Y} f  IsStableFreeElgotAlgebra.[_,_]♯ {Y = X} (stable X) {X = A} (algebras Y) f
    _# = λ {A} {X} f  Elgot-Algebra._# (algebras A) {X = X} f

  open IsStableFreeElgotAlgebra using (♯-law; ♯-preserving; ♯-unique)
  open Elgot-Algebra using (#-Uniformity; #-Fixpoint; #-resp-≈)

  module _ (P : Category.Obj (CProduct C C)) where
    private
      X = proj₁ P
      Y = proj₂ P
    τ : X × K.₀ Y  K.₀ (X × Y)
    τ = η (X × Y) 

    τ-η : τ  (idC  η Y)  η (X × Y)
    τ-η = sym (♯-law (stable Y) (η (X × Y)))

    -- for K not only strengthening with 1 is irrelevant
    τ-π₂ : K.₁ π₂  τ  π₂
    τ-π₂ = begin 
      K.₁ π₂  τ ≈⟨ ♯-unique (stable Y) (η _  π₂) (K.₁ π₂  τ) comm₁ comm₂ 
      (η _  π₂)  ≈⟨ sym (♯-unique (stable Y) (η _  π₂) π₂ (sym π₂∘⁂) comm₃) 
      π₂ 
      where
        comm₁ : η _  π₂  (K.₁ π₂  τ)  (idC  η _)
        comm₁ = sym (begin 
          (K.₁ π₂  τ)  (idC  η _) ≈⟨ pullʳ τ-η  
          K.₁ π₂  η _                 ≈⟨ (sym (F₁⇒extend monadK π₂)) ⟩∘⟨refl 
          extend (η _  π₂)  η _                              ≈⟨ kleisliK.identityʳ 
          η _  π₂                                             )
        comm₂ :  {Z : Obj} (h : Z  K.₀ Y + Z)  (K.₁ π₂  τ)  (idC  h # )  ((K.₁ π₂  τ +₁ idC)  distributeˡ⁻¹  (idC  h))#
        comm₂ {Z} h = begin
          (K.₁ π₂  τ)  (idC  h #)                                   ≈⟨ pullʳ (♯-preserving (stable Y) (η _) h)  
          K.₁ π₂  ((τ +₁ idC)  distributeˡ⁻¹  (idC  h)) #          ≈⟨ Elgot-Algebra-Morphism.preserves ((freealgebras (X × Y) FreeObject.*) (η _  π₂)) 
          ((K.₁ π₂ +₁ idC)  (τ +₁ idC)  distributeˡ⁻¹  (idC  h)) # ≈⟨ #-resp-≈ (algebras Y) (pullˡ (+₁∘+₁  +₁-cong₂ refl identity²)) 
          ((K.₁ π₂  τ +₁ idC)  distributeˡ⁻¹  (idC  h))#           
        comm₃ :  {Z : Obj} (h : Z  K.₀ Y + Z)  π₂  (idC  h #)  ((π₂ +₁ idC)  distributeˡ⁻¹  (idC  h)) #
        comm₃ {Z} h = begin 
          π₂  (idC  h #)                            ≈⟨ π₂∘⁂  
          h #  π₂                                    ≈⟨ sym (#-Uniformity (algebras Y) uni-helper)  
          ((π₂ +₁ idC)  distributeˡ⁻¹  (idC  h)) # 
          where
            uni-helper = begin 
              (idC +₁ π₂)  (π₂ +₁ idC)  distributeˡ⁻¹  (idC  h) ≈⟨ pullˡ +₁∘+₁  
              (idC  π₂ +₁ π₂  idC)  distributeˡ⁻¹  (idC  h)    ≈⟨ (+₁-cong₂ identityˡ identityʳ) ⟩∘⟨refl  
              (π₂ +₁ π₂)  distributeˡ⁻¹  (idC  h)                ≈⟨ pullˡ distributeˡ⁻¹-π₂  
              π₂  (idC  h)                                        ≈⟨ project₂  
              h  π₂                                                

  τ-comm :  {X Y Z : Obj} (h : Z  K.₀ Y + Z)  τ (X , Y)  (idC  h #)  ((τ (X , Y) +₁ idC)  distributeˡ⁻¹  (idC  h))#
  τ-comm {X} {Y} {Z} h = ♯-preserving (stable Y) (η (X × Y)) h

  K₁η :  {X Y} (f : X  Y)  K.₁ f  η X  η Y  f
  K₁η {X} {Y} f = begin 
    K.₁ f  η X            ≈⟨ (sym (F₁⇒extend monadK f)) ⟩∘⟨refl  
    extend (η Y  f)  η X ≈⟨ kleisliK.identityʳ  
    η Y  f                

  KStrength : Strength monoidal monadK
  KStrength = record
    { strengthen = ntHelper (record { η = τ ; commute = commute' })
    ; identityˡ = λ {X}  τ-π₂ (Terminal. terminal , X)
    ; η-comm = λ {A} {B}  τ-η (A , B)
    ; μ-η-comm = μ-η-comm'
    ; strength-assoc = strength-assoc'
    }
    where
      commute' :  {P₁ : Category.Obj (CProduct C C)} {P₂ : Category.Obj (CProduct C C)} (fg : _[_,_] (CProduct C C) P₁ P₂) 
         τ P₂  ((proj₁ fg)  K.₁ (proj₂ fg))  K.₁ ((proj₁ fg)  (proj₂ fg))  τ P₁
      commute' {(U , V)} {(W , X)} (f , g) = begin 
        τ _  (f  K.₁ g) ≈⟨ ♯-unique (stable V) (η (W × X)  (f  g)) (τ _  (f  K.₁ g)) comm₁ comm₂  
        (η _  (f  g))  ≈⟨ sym (♯-unique (stable V) (η (W × X)  (f  g)) (K.₁ (f  g)  τ _) comm₃ comm₄) 
        K.₁ (f  g)  τ _ 
        where
          comm₁ : η (W × X)  (f  g)  (τ (W , X)  (f  K.₁ g))  (idC  η V)
          comm₁ = sym (begin 
            (τ (W , X)  (f  K.₁ g))  (idC  η V) ≈⟨ pullʳ ⁂∘⁂  
            τ (W , X)  (f  idC  K.₁ g  η V)     ≈⟨ refl⟩∘⟨ (⁂-cong₂ id-comm (K₁η g))  
            τ (W , X)  (idC  f  η X  g)         ≈⟨ refl⟩∘⟨ (sym ⁂∘⁂)  
            τ (W , X)  (idC  η X)  (f  g)       ≈⟨ pullˡ (τ-η (W , X))  
            η (W × X)  (f  g)                     )
          comm₃ : η (W × X)  (f  g)  (K.₁ (f  g)  τ (U , V))  (idC  η V)
          comm₃ = sym (begin
            (K.₁ (f  g)  τ (U , V))  (idC  η V) ≈⟨ pullʳ (τ-η (U , V))  
            K.₁ (f  g)  η (U × V)                 ≈⟨ K₁η (f  g)  
            η (W × X)  (f  g)                     )
          comm₂ :  {Z : Obj} (h : Z  K.₀ V + Z)  (τ (W , X)  (f  K.₁ g))  (idC  h #)  ((τ (W , X)  (f  K.₁ g) +₁ idC)  distributeˡ⁻¹  (idC  h))#
          comm₂ {Z} h = begin 
            (τ (W , X)  (f  K.₁ g))  (idC  h #)                                         ≈⟨ pullʳ ⁂∘⁂  
            τ (W , X)  (f  idC  K.₁ g  (h #))                                           ≈⟨ refl⟩∘⟨ (⁂-cong₂ id-comm ((Elgot-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) (η X  g)))  sym identityʳ))  
            τ (W , X)  (idC  f  ((K.₁ g +₁ idC)  h) #  idC)                            ≈⟨ refl⟩∘⟨ (sym ⁂∘⁂)  
            τ (W , X)  (idC  ((K.₁ g +₁ idC)  h) #)  (f  idC)                          ≈⟨ pullˡ (♯-preserving (stable _) (η _) ((K.₁ g +₁ idC)  h))  
            ((τ (W , X) +₁ idC)  distributeˡ⁻¹  (idC  (K.₁ g +₁ idC)  h)) #  (f  idC) ≈⟨ sym (#-Uniformity (algebras _) uni-helper)  
            ((τ (W , X)  (f  K.₁ g) +₁ idC)  distributeˡ⁻¹  (idC  h))#                  
            where
              uni-helper = begin 
                (idC +₁ f  idC)  (τ (W , X)  (f  K.₁ g) +₁ idC)  distributeˡ⁻¹  (idC  h) ≈⟨ pullˡ +₁∘+₁  
                (idC  τ (W , X)  (f  K.₁ g) +₁ (f  idC)  idC)  distributeˡ⁻¹  (idC  h)  ≈⟨ (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl  
                (τ (W , X)  (f  K.₁ g) +₁ idC  (f  idC))  distributeˡ⁻¹  (idC  h)        ≈⟨ (sym +₁∘+₁) ⟩∘⟨refl  
                ((τ (W , X) +₁ idC)  ((f  K.₁ g) +₁ (f  idC)))  distributeˡ⁻¹  (idC  h)   ≈⟨ pullʳ (pullˡ (distributeˡ⁻¹-natural f (K.₁ g) idC))  
                (τ (W , X) +₁ idC)  (distributeˡ⁻¹  (f  (K.₁ g +₁ idC)))  (idC  h)         ≈⟨ refl⟩∘⟨ (pullʳ (⁂∘⁂  ⁂-cong₂ identityʳ refl))  
                (τ (W , X) +₁ idC)  distributeˡ⁻¹  (f  (K.₁ g +₁ idC)  h)                   ≈˘⟨ pullʳ (pullʳ (⁂∘⁂  ⁂-cong₂ identityˡ identityʳ))  
                ((τ (W , X) +₁ idC)  distributeˡ⁻¹  (idC  (K.₁ g +₁ idC)  h))  (f  idC)   
          comm₄ :  {Z : Obj} (h : Z  K.₀ V + Z)  (K.₁ (f  g)  τ (U , V))  (idC  h #)  ((K.₁ (f  g)  τ (U , V) +₁ idC)  distributeˡ⁻¹  (idC  h)) #
          comm₄ {Z} h = begin 
            (K.₁ (f  g)  τ (U , V))  (idC  (h #))                                 ≈⟨ pullʳ (τ-comm h)  
            K.₁ (f  g)  ((τ (U , V) +₁ idC)  distributeˡ⁻¹  (idC  h)) #          ≈⟨ Elgot-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) (η (W × X)  (f  g)))  
            ((K.₁ (f  g) +₁ idC)  (τ (U , V) +₁ idC)  distributeˡ⁻¹  (idC  h)) # ≈⟨ #-resp-≈ (algebras (W × X)) (pullˡ (+₁∘+₁  +₁-cong₂ refl identity²))  
            ((K.₁ (f  g)  τ (U , V) +₁ idC)  distributeˡ⁻¹  (idC  h)) #          

      μ-η-comm' :  {A B}  μ.η _  K.₁ (τ _)  τ (A , K.₀ B)  τ _  (idC  μ.η _)
      μ-η-comm' {A} {B} = begin 
        μ.η _  K.₁ (τ _)  τ _ ≈⟨ ♯-unique (stable (K.₀ B)) (τ (A , B)) (μ.η _  K.₁ (τ _)  τ _) comm₁ comm₂  
        (τ _ )                 ≈⟨ sym (♯-unique (stable (K.₀ B)) (τ (A , B)) (τ _  (idC  μ.η _)) (sym (cancelʳ (⁂∘⁂  ⁂-cong₂ identity² monadK.identityʳ  ⟨⟩-unique id-comm id-comm))) comm₃)  
        τ _  (idC  μ.η _)     
        where
          comm₁ : τ (A , B)  (μ.η _  K.₁ (τ _)  τ _)  (idC  η _)
          comm₁ = sym (begin 
            (μ.η _  K.₁ (τ _)  τ _)  (idC  η _) ≈⟨ pullʳ (pullʳ (τ-η _))  
            μ.η _  K.₁ (τ _)  η _                 ≈⟨ refl⟩∘⟨ (K₁η (τ (A , B)))  
            μ.η _  η _  τ _                       ≈⟨ cancelˡ monadK.identityʳ  
            τ _                                     )
          comm₂ :  {Z : Obj} (h : Z  K.₀ (K.₀ B) + Z)  (μ.η _  K.₁ (τ _)  τ _)  (idC  h #)  ((μ.η _  K.₁ (τ (A , B))  τ _ +₁ idC)  distributeˡ⁻¹  (idC  h)) #
          comm₂ {Z} h = begin 
            (μ.η _  K.₁ (τ _)  τ _)  (idC  h #)                                                      ≈⟨ pullʳ (pullʳ (τ-comm h))  
            μ.η _  K.₁ (τ _)  (((τ (A , K.₀ B) +₁ idC)  distributeˡ⁻¹  (idC  h)) #)                 ≈⟨ refl⟩∘⟨ (Elgot-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) (η _  τ _)))  
            μ.η _  ((K.₁ (τ _) +₁ idC)  (τ (A , K.₀ B) +₁ idC)  distributeˡ⁻¹  (idC  h)) #          ≈⟨ Elgot-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) idC)  
            ((μ.η _ +₁ idC)  (K.₁ (τ _) +₁ idC)  (τ (A , K.₀ B) +₁ idC)  distributeˡ⁻¹  (idC  h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ +₁∘+₁)  
            ((μ.η _  K.₁ (τ _) +₁ idC  idC)  (τ (A , K.₀ B) +₁ idC)  distributeˡ⁻¹  (idC  h)) #    ≈⟨ #-resp-≈ (algebras _) (pullˡ +₁∘+₁) 
            (((μ.η _  K.₁ (τ _))  τ _ +₁ (idC  idC)  idC)  distributeˡ⁻¹  (idC  h)) #             ≈⟨ #-resp-≈ (algebras _) ((+₁-cong₂ assoc (cancelʳ identity²)) ⟩∘⟨refl) 
            ((μ.η _  K.₁ (τ (A , B))  τ _ +₁ idC)  distributeˡ⁻¹  (idC  h)) #                       
          comm₃ :  {Z : Obj} (h : Z  K.₀ (K.₀ B) + Z)  (τ _  (idC  μ.η _))  (idC  h #)  ((τ _  (idC  μ.η _) +₁ idC)  distributeˡ⁻¹  (idC  h)) #
          comm₃ {Z} h = begin 
            (τ _  (idC  μ.η _))  (idC  h #)                                         ≈⟨ pullʳ ⁂∘⁂  
            τ _  (idC  idC  μ.η _  h #)                                             ≈⟨ refl⟩∘⟨ (⁂-cong₂ identity² (Elgot-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) idC)))  
            τ _  (idC  ((μ.η _ +₁ idC)  h) #)                                        ≈⟨ τ-comm ((μ.η B +₁ idC)  h)  
            ((τ _ +₁ idC)  distributeˡ⁻¹  (idC  (μ.η B +₁ idC)  h)) #               ≈⟨ #-resp-≈ (algebras _) (refl⟩∘⟨ (refl⟩∘⟨ (⁂-cong₂ (sym identity²) refl  sym ⁂∘⁂)))  
            ((τ _ +₁ idC)  distributeˡ⁻¹  (idC  (μ.η B +₁ idC))  (idC  h)) #       ≈⟨ #-resp-≈ (algebras _) (refl⟩∘⟨ (pullˡ (sym (distributeˡ⁻¹-natural idC (μ.η B) idC)))) 
            ((τ _ +₁ idC)  ((idC  μ.η B +₁ idC  idC)  distributeˡ⁻¹)  (idC  h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ (pullˡ (+₁∘+₁  +₁-cong₂ refl (elimʳ (⟨⟩-unique id-comm id-comm)))))  
            (((τ _  (idC  μ.η B) +₁ idC)  distributeˡ⁻¹)  (idC  h)) #              ≈⟨ #-resp-≈ (algebras _) assoc 
            ((τ _  (idC  μ.η _) +₁ idC)  distributeˡ⁻¹  (idC  h)) #                

      strength-assoc' :  {X Y Z}  K.₁ assocˡ  τ (X × Y , Z)  τ (X , Y × Z)  (idC  τ (Y , Z))  assocˡ
      strength-assoc' {X} {Y} {Z} = begin
        K.₁ assocˡ  τ _             ≈⟨ ♯-unique (stable _) (η (X × Y × Z)  assocˡ) (K.₁ assocˡ  τ _) (sym (pullʳ (τ-η _)  K₁η _)) comm₁  
        ((η (X × Y × Z)  assocˡ) ) ≈⟨ sym (♯-unique (stable _) (η (X × Y × Z)  assocˡ) (τ _  (idC  τ _)  assocˡ) comm₂ comm₃) 
        τ _  (idC  τ _)  assocˡ   
        where
          comm₁ :  {A : Obj} (h : A  K.₀ Z + A)  (K.₁ assocˡ  τ _)  (idC  h #)  ((K.₁ assocˡ  τ _ +₁ idC)  distributeˡ⁻¹  (idC  h)) #
          comm₁ {A} h = begin 
            (K.₁ assocˡ  τ _)  (idC  h #)                                  ≈⟨ pullʳ (τ-comm h)  
            K.₁ assocˡ  ((τ _ +₁ idC)  distributeˡ⁻¹  (idC  h))#          ≈⟨ Elgot-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) _)  
            ((K.₁ assocˡ +₁ idC)  (τ _ +₁ idC)  distributeˡ⁻¹  (idC  h))# ≈⟨ #-resp-≈ (algebras _) (pullˡ (+₁∘+₁  +₁-cong₂ refl identity²))  
            ((K.₁ assocˡ  τ _ +₁ idC)  distributeˡ⁻¹  (idC  h)) #         
          comm₂ : η (X × Y × Z)  assocˡ  (τ _  (idC  τ _)  assocˡ)  (idC  η _)
          comm₂ = sym (begin 
            (τ _  (idC  τ _)  assocˡ)  (idC  η _)                                       ≈⟨ (refl⟩∘⟨ ⁂∘⟨⟩) ⟩∘⟨refl  
            (τ _   idC  π₁  π₁ , τ _   π₂  π₁ , π₂  )  (idC  η _)                 ≈⟨ pullʳ ⟨⟩∘  
            τ _   (idC  π₁  π₁)  (idC  η _) , (τ _   π₂  π₁ , π₂ )  (idC  η _)  ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (identityˡ ⟩∘⟨refl  pullʳ π₁∘⁂) (pullʳ ⟨⟩∘))  
            τ _   π₁  idC  π₁ , τ _   (π₂  π₁)  (idC  η _) , π₂  (idC  η _)     ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂)))  
            τ _   π₁  π₁ , τ _   π₂  idC  π₁ , η _  π₂                             ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (refl⟩∘⟨ ((⟨⟩-cong₂ (sym identityˡ) refl)  sym ⁂∘⟨⟩)))  
            τ _   idC  π₁  π₁ , τ _  (idC  η _)   π₂  idC  π₁ , π₂               ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (pullˡ (τ-η (Y , Z))))  
            τ _   idC  π₁  π₁ , η _   π₂  idC  π₁ , π₂                             ≈⟨ refl⟩∘⟨ (sym ⁂∘⟨⟩)  
            τ _  (idC  η _)   π₁  π₁ ,  π₂  idC  π₁ , π₂                           ≈⟨ pullˡ (τ-η _)  
            η _   π₁  π₁ ,  π₂  idC  π₁ , π₂                                         ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ refl (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) refl)  
            η (X × Y × Z)  assocˡ                                                           )
          comm₃ :  {A : Obj} (h : A  K.₀ Z + A)  (τ _  (idC  τ _)  assocˡ)  (idC  h #)  ((τ _  (idC  τ _)  assocˡ +₁ idC)  distributeˡ⁻¹  (idC  h)) #
          comm₃ {A} h = begin 
            (τ _  (idC  τ _)  assocˡ)  (idC  h #)                                                         ≈⟨ (refl⟩∘⟨ ⁂∘⟨⟩) ⟩∘⟨refl  
            (τ _   idC  π₁  π₁ , τ _   π₂  π₁ , π₂  )  (idC  h #)                                   ≈⟨ pullʳ ⟨⟩∘  
            τ _   (idC  π₁  π₁)  (idC  h #) , (τ _   π₂  π₁ , π₂ )  (idC  h #)                    ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (identityˡ ⟩∘⟨refl  pullʳ π₁∘⁂) (pullʳ ⟨⟩∘))  
            τ _   π₁  idC  π₁ , τ _   (π₂  π₁)  (idC  h #) , π₂  (idC  h #)                       ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂))  
            τ _   π₁  π₁ , τ _   π₂  idC  π₁ , h #  π₂                                               ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ (⟨⟩-cong₂ ((refl⟩∘⟨ identityˡ)  sym identityˡ) refl)))  
            τ _   π₁  π₁ , τ _   idC  π₂  π₁ , h #  π₂                                               ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ refl (refl⟩∘⟨ (sym ⁂∘⟨⟩))  
            τ _   π₁  π₁ , τ _  (idC  h #)   π₂  π₁ , π₂                                             ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (pullˡ (τ-comm h)))  
            τ _   idC  π₁  π₁ , (((τ (Y , Z) +₁ idC)  distributeˡ⁻¹  (idC  h)) #)   π₂  π₁ , π₂    ≈⟨ refl⟩∘⟨ (sym ⁂∘⟨⟩)  
            τ _  (idC  ((τ (Y , Z) +₁ idC)  distributeˡ⁻¹  (idC  h)) #)  assocˡ                          ≈⟨ pullˡ (τ-comm _)  
            ((τ _ +₁ idC)  distributeˡ⁻¹  (idC  (τ (Y , Z) +₁ idC)  distributeˡ⁻¹  (idC  h))) #  assocˡ ≈⟨ sym (#-Uniformity (algebras _) uni-helper) 
            ((τ _  (idC  τ _)  assocˡ +₁ idC)  distributeˡ⁻¹  (idC  h)) #                                
            where
              uni-helper : (idC +₁ assocˡ)  (τ _  (idC  τ (Y , Z))  assocˡ +₁ idC)  distributeˡ⁻¹  (idC  h)  ((τ _ +₁ idC)  distributeˡ⁻¹  (idC  (τ (Y , Z) +₁ idC)  distributeˡ⁻¹  (idC  h)))  assocˡ
              uni-helper = begin 
                (idC +₁ assocˡ)  (τ _  (idC  τ (Y , Z))  assocˡ +₁ idC)  distributeˡ⁻¹  (idC  h)                           ≈⟨ pullˡ +₁∘+₁  
                (idC  τ _  (idC  τ (Y , Z))  assocˡ +₁ assocˡ  idC)  distributeˡ⁻¹  (idC  h)                              ≈⟨ (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl  
                (τ _  (idC  τ (Y , Z))  assocˡ +₁ idC  assocˡ)  distributeˡ⁻¹  (idC  h)                                    ≈˘⟨ (+₁∘+₁  +₁-cong₂ assoc refl) ⟩∘⟨refl  
                ((τ _  (idC  τ (Y , Z)) +₁ idC)  (assocˡ +₁ assocˡ))  distributeˡ⁻¹  (idC  h)                               ≈⟨ pullʳ (pullˡ (sym distributeˡ⁻¹-assoc))  
                (τ _  (idC  τ (Y , Z)) +₁ idC)  (distributeˡ⁻¹  (idC  distributeˡ⁻¹)  assocˡ)  (idC  h)                   ≈⟨ refl⟩∘⟨ assoc²'  
                (τ _  (idC  τ _) +₁ idC)  distributeˡ⁻¹  (idC  distributeˡ⁻¹)  assocˡ  (idC  h)                           ≈˘⟨ (+₁-cong₂ refl (elimʳ (⟨⟩-unique id-comm id-comm))) ⟩∘⟨refl  
                (τ _  (idC  τ _) +₁ idC  (idC  idC))  distributeˡ⁻¹  (idC  distributeˡ⁻¹)  assocˡ  (idC  h)             ≈˘⟨ assoc  assoc 
                (((τ _  (idC  τ _) +₁ idC  (idC  idC))  distributeˡ⁻¹)  (idC  distributeˡ⁻¹))  _≅_.to ×-assoc  (idC  h) ≈˘⟨ pullˡ (pullˡ (pullˡ +₁∘+₁)) 
                (τ _ +₁ idC)  ((((idC  τ _) +₁ (idC  idC))  distributeˡ⁻¹)  (idC  distributeˡ⁻¹))  assocˡ  (idC  h)      ≈⟨ refl⟩∘⟨ ((distributeˡ⁻¹-natural idC (τ (Y , Z)) idC) ⟩∘⟨refl) ⟩∘⟨refl  
                (τ _ +₁ idC)  ((distributeˡ⁻¹  (idC  (τ (Y , Z) +₁ idC)))  (idC  distributeˡ⁻¹))  assocˡ  (idC  h)        ≈⟨ refl⟩∘⟨ (assoc  assoc  refl⟩∘⟨ sym-assoc) 
                (τ _ +₁ idC)  distributeˡ⁻¹  ((idC  (τ (Y , Z) +₁ idC))  (idC  distributeˡ⁻¹))  assocˡ  (idC  h)          ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (⁂∘⁂  ⁂-cong₂ identity² refl) ⟩∘⟨refl  
                (τ _ +₁ idC)  distributeˡ⁻¹  (idC  (τ (Y , Z) +₁ idC)  distributeˡ⁻¹)  assocˡ  (idC  h)                    ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂-cong₂ (sym (⟨⟩-unique id-comm id-comm)) refl  
                (τ _ +₁ idC)  distributeˡ⁻¹  (idC  (τ (Y , Z) +₁ idC)  distributeˡ⁻¹)  assocˡ  ((idC  idC)  h)            ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ assocˡ∘⁂  
                (τ _ +₁ idC)  distributeˡ⁻¹  (idC  (τ (Y , Z) +₁ idC)  distributeˡ⁻¹)  (idC  (idC  h))  assocˡ            ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ assoc 
                (τ _ +₁ idC)  distributeˡ⁻¹  ((idC  (τ (Y , Z) +₁ idC)  distributeˡ⁻¹)  (idC  (idC  h)))  assocˡ          ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂∘⁂ ⟩∘⟨refl  
                (τ _ +₁ idC)  distributeˡ⁻¹  (idC  idC  ((τ (Y , Z) +₁ idC)  distributeˡ⁻¹)  (idC  h))  assocˡ            ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ ((⁂-cong₂ identity² assoc) ⟩∘⟨refl)  sym-assoc)  sym-assoc 
                ((τ _ +₁ idC)  distributeˡ⁻¹  (idC  (τ (Y , Z) +₁ idC)  distributeˡ⁻¹  (idC  h)))  assocˡ                  

  KStrong : StrongMonad {C = C} monoidal
  KStrong = record 
    { M = monadK
    ; strength = KStrength
    }

  τ-comm-id :  {X Y Z} (f : X  Y)  τ (Y , Z)  (f  idC)  K.₁ (f  idC)  τ (X , Z)
  τ-comm-id {X} {Y} {Z} f = begin 
    τ (Y , Z)  (f  idC) ≈⟨ refl⟩∘⟨ (⁂-cong₂ refl (sym K.identity))  
    τ (Y , Z)  (f  K.₁ idC) ≈⟨ strengthen.commute (f , idC)  
    K.₁ (f  idC)  τ (X , Z) 
    where
      open Strength KStrength using (strengthen)

  module strongK = StrongMonad KStrong