mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
15 KiB
15 KiB
Summary
This file introduces (guarded) elgot algebras
- Definition 7 Guarded Elgot Algebras
- Theorem 8 Existence of final coalgebras is equivalent to existence of free H-guarded Elgot algebras
- Proposition 10 Characterization of unguarded elgot algebras
Code
module ElgotAlgebra where
private
variable
o ℓ e : Level
module _ (D : ExtensiveDistributiveCategory o ℓ e) where
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
open Cocartesian (Extensive.cocartesian extensive)
open Cartesian (ExtensiveDistributiveCategory.cartesian D)
open MR C
Definition 7 Guarded Elgot Algebras
module _ {F : Endofunctor C} (FA : F-Algebra F) where
record Guarded-Elgot-Algebra : Set (o ⊔ ℓ ⊔ e) where
open Functor F public
open F-Algebra FA public
-- iteration operator
field
_# : ∀ {X} → (X ⇒ A + F₀ X) → (X ⇒ A)
-- _# properties
field
#-Fixpoint : ∀ {X} {f : X ⇒ A + F₀ X }
→ f # ≈ [ idC , α ∘ F₁ (f #) ] ∘ f
#-Uniformity : ∀ {X Y} {f : X ⇒ A + F₀ X} {g : Y ⇒ A + F₀ Y} {h : X ⇒ Y}
→ (idC +₁ F₁ h) ∘ f ≈ g ∘ h
→ f # ≈ g # ∘ h
#-Compositionality : ∀ {X Y} {f : X ⇒ A + F₀ X} {h : Y ⇒ X + F₀ Y}
→ (((f #) +₁ idC) ∘ h)# ≈ ([ (idC +₁ (F₁ i₁)) ∘ f , i₂ ∘ (F₁ i₂) ] ∘ [ i₁ , h ])# ∘ i₂
#-resp-≈ : ∀ {X} {f g : X ⇒ A + F₀ X}
→ f ≈ g
→ (f #) ≈ (g #)
Proposition 10 Unguarded Elgot Algebras
Unguarded elgot algebras are Id
-guarded elgot algebras.
Here we give a different Characterization and show that it is equal.
record Elgot-Algebra-on (A : Obj) : Set (o ⊔ ℓ ⊔ e) where
-- iteration operator
field
_# : ∀ {X} → (X ⇒ A + X) → (X ⇒ A)
-- _# properties
field
#-Fixpoint : ∀ {X} {f : X ⇒ A + X }
→ f # ≈ [ idC , f # ] ∘ f
#-Uniformity : ∀ {X Y} {f : X ⇒ A + X} {g : Y ⇒ A + Y} {h : X ⇒ Y}
→ (idC +₁ h) ∘ f ≈ g ∘ h
→ f # ≈ g # ∘ h
#-Folding : ∀ {X Y} {f : X ⇒ A + X} {h : Y ⇒ X + Y}
→ ((f #) +₁ h)# ≈ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] #
#-resp-≈ : ∀ {X} {f g : X ⇒ A + X} → f ≈ g → (f #) ≈ (g #)
open HomReasoning
open Equiv
-- Compositionality is derivable
#-Compositionality : ∀ {X Y} {f : X ⇒ A + X} {h : Y ⇒ X + Y}
→ (((f #) +₁ idC) ∘ h)# ≈ ([ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ])# ∘ i₂
#-Compositionality {X} {Y} {f} {h} = begin
(((f #) +₁ idC) ∘ h)# ≈⟨ #-Uniformity {f = ((f #) +₁ idC) ∘ h}
{g = (f #) +₁ h}
{h = h}
(trans (pullˡ +₁∘+₁) (+₁-cong₂ identityˡ identityʳ ⟩∘⟨refl))⟩
((f # +₁ h)# ∘ h) ≈˘⟨ inject₂ ⟩
(([ idC ∘ (f #) , (f # +₁ h)# ∘ h ] ∘ i₂)) ≈˘⟨ []∘+₁ ⟩∘⟨refl ⟩
(([ idC , ((f # +₁ h)#) ] ∘ (f # +₁ h)) ∘ i₂) ≈˘⟨ #-Fixpoint {f = (f # +₁ h) } ⟩∘⟨refl ⟩
(f # +₁ h)# ∘ i₂ ≈⟨ #-Folding ⟩∘⟨refl ⟩
([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₂) ≈⟨ #-Fixpoint ⟩∘⟨refl ⟩
([ idC , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ]
∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ∘ i₂ ≈⟨ pullʳ inject₂ ⟩
[ idC , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ] ∘ (i₂ ∘ h) ≈⟨ pullˡ inject₂ ⟩
([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ h) ≈˘⟨ refl⟩∘⟨ inject₂ {f = i₁} {g = h} ⟩
([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ [ i₁ , h ] ∘ i₂) ≈˘⟨ pushˡ (#-Uniformity {f = [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ]}
{g = [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]}
{h = [ i₁ , h ]}
(begin
(idC +₁ [ i₁ , h ])
∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ] ≈⟨ refl⟩∘⟨ ∘[] ⟩
(idC +₁ [ i₁ , h ]) ∘ [ [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ i₁
, [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ h ] ≈⟨ refl⟩∘⟨ []-congʳ inject₁ ⟩
(idC +₁ [ i₁ , h ]) ∘ [ (idC +₁ i₁) ∘ f
, [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ h ] ≈⟨ ∘[] ⟩
[ (idC +₁ [ i₁ , h ]) ∘ ((idC +₁ i₁) ∘ f)
, (idC +₁ [ i₁ , h ]) ∘ ([ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ h) ] ≈⟨ []-cong₂ (pullˡ +₁∘+₁) (pullˡ ∘[]) ⟩
[ ((idC ∘ idC) +₁ ([ i₁ , h ] ∘ i₁)) ∘ f
, [ (idC +₁ [ i₁ , h ]) ∘ ((idC +₁ i₁) ∘ f)
, (idC +₁ [ i₁ , h ]) ∘ (i₂ ∘ i₂) ] ∘ h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² (inject₁)))
(∘-resp-≈ˡ ([]-cong₂ (pullˡ +₁∘+₁) (pullˡ inject₂))) ⟩
[ (idC +₁ i₁) ∘ f , ([ ((idC ∘ idC) +₁ ([ i₁ , h ] ∘ i₁)) ∘ f
, (i₂ ∘ [ i₁ , h ]) ∘ i₂ ]) ∘ h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² inject₁))
(pullʳ inject₂))) ⟩
[ (idC +₁ i₁) ∘ f , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ h ] ≈˘⟨ []-congʳ inject₁ ⟩
[ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ i₁
, [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ h ] ≈˘⟨ ∘[] ⟩
[ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ [ i₁ , h ] ∎))
⟩
([ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ])# ∘ i₂ ∎
-- every elgot-algebra comes with a divergence constant
!ₑ : ⊥ ⇒ A
!ₑ = i₂ #
record Elgot-Algebra : Set (o ⊔ ℓ ⊔ e) where
field
A : Obj
algebra : Elgot-Algebra-on A
open Elgot-Algebra-on algebra public
--*
-- Here follows the proof of equivalence for unguarded and Id-guarded Elgot-Algebras
--*
private
-- identity algebra
Id-Algebra : Obj → F-Algebra (idF {C = C})
Id-Algebra A = record
{ A = A
; α = idC
}
where open Functor (idF {C = C})
-- constructing an Id-Guarded Elgot-Algebra from an unguarded one
Unguarded→Id-Guarded : (EA : Elgot-Algebra) → Guarded-Elgot-Algebra (Id-Algebra (Elgot-Algebra.A EA))
Unguarded→Id-Guarded ea = record
{ _# = _#
; #-Fixpoint = λ {X} {f} → trans #-Fixpoint (sym (∘-resp-≈ˡ ([]-congˡ identityˡ)))
; #-Uniformity = #-Uniformity
; #-Compositionality = #-Compositionality
; #-resp-≈ = #-resp-≈
}
where
open Elgot-Algebra ea
open HomReasoning
open Equiv
-- constructing an unguarded Elgot-Algebra from an Id-Guarded one
Id-Guarded→Unguarded : ∀ {A : Obj} → Guarded-Elgot-Algebra (Id-Algebra A) → Elgot-Algebra
Id-Guarded→Unguarded gea = record
{ A = A
; algebra = record
{ _# = _#
; #-Fixpoint = λ {X} {f} → trans #-Fixpoint (∘-resp-≈ˡ ([]-congˡ identityˡ))
; #-Uniformity = #-Uniformity
; #-Folding = λ {X} {Y} {f} {h} → begin
((f #) +₁ h) # ≈˘⟨ +-g-η ⟩
[ (f # +₁ h)# ∘ i₁ , (f # +₁ h)# ∘ i₂ ] ≈⟨ []-cong₂ left right ⟩
[ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₁ , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₂ ] ≈⟨ +-g-η ⟩
([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] #) ∎
; #-resp-≈ = #-resp-≈
}
}
where
open Guarded-Elgot-Algebra gea
open HomReasoning
open Equiv
left : ∀ {X Y} {f : X ⇒ A + X} {h : Y ⇒ X + Y}
→ (f # +₁ h)# ∘ i₁ ≈ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₁
left {X} {Y} {f} {h} = begin
(f # +₁ h)# ∘ i₁ ≈⟨ #-Fixpoint ⟩∘⟨refl ⟩
([ idC , idC ∘ (((f #) +₁ h) #) ] ∘ ((f #) +₁ h)) ∘ i₁ ≈⟨ pullʳ +₁∘i₁ ⟩
[ idC , idC ∘ (((f #) +₁ h) #) ] ∘ (i₁ ∘ f #) ≈⟨ cancelˡ inject₁ ⟩
(f #) ≈⟨ #-Uniformity {f = f}
{g = [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]}
{h = i₁}
(sym inject₁)⟩
([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₁) ∎
byUni : ∀ {X Y} {f : X ⇒ A + X} {h : Y ⇒ X + Y}
→ (idC +₁ [ i₁ , h ]) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ] ≈ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ [ i₁ , h ]
byUni {X} {Y} {f} {h} = begin
(idC +₁ [ i₁ , h ])
∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ] ≈⟨ ∘-resp-≈ʳ (trans ∘[] ([]-congʳ inject₁)) ⟩
(idC +₁ [ i₁ , h ]) ∘ [ (idC +₁ i₁) ∘ f
, [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ h ] ≈⟨ ∘[] ⟩
[ (idC +₁ [ i₁ , h ]) ∘ ((idC +₁ i₁) ∘ f)
, (idC +₁ [ i₁ , h ]) ∘ ([ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ h) ] ≈⟨ []-cong₂ sym-assoc sym-assoc ⟩
[ ((idC +₁ [ i₁ , h ]) ∘ (idC +₁ i₁)) ∘ f
, ((idC +₁ [ i₁ , h ]) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ]) ∘ h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ ∘[]) ⟩
[ ((idC ∘ idC) +₁ ([ i₁ , h ] ∘ i₁)) ∘ f
, [ (idC +₁ [ i₁ , h ]) ∘ ((idC +₁ i₁) ∘ f)
, (idC +₁ [ i₁ , h ]) ∘ (i₂ ∘ i₂) ] ∘ h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² (inject₁)))
(∘-resp-≈ˡ ([]-cong₂ sym-assoc sym-assoc)) ⟩
[ (idC +₁ i₁) ∘ f
, [ ((idC +₁ [ i₁ , h ]) ∘ (idC +₁ i₁)) ∘ f
, ((idC +₁ [ i₁ , h ]) ∘ i₂) ∘ i₂ ] ∘ h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ inject₂))) ⟩
[ (idC +₁ i₁) ∘ f
, [ ((idC ∘ idC) +₁ ([ i₁ , h ] ∘ i₁)) ∘ f
, (i₂ ∘ [ i₁ , h ]) ∘ i₂ ] ∘ h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² inject₁)) assoc)) ⟩
[ (idC +₁ i₁) ∘ f
, [ (idC +₁ i₁) ∘ f
, i₂ ∘ ([ i₁ , h ] ∘ i₂) ] ∘ h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-congˡ (∘-resp-≈ʳ inject₂))) ⟩
[ (idC +₁ i₁) ∘ f , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ h ] ≈˘⟨ []-congʳ inject₁ ⟩
[ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ i₁
, [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ h ] ≈˘⟨ ∘[] ⟩
[ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ [ i₁ , h ] ∎
right : ∀ {X Y} {f : X ⇒ A + X} {h : Y ⇒ X + Y}
→ (f # +₁ h)# ∘ i₂ ≈ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₂
right {X} {Y} {f} {h} = begin
(f # +₁ h)# ∘ i₂ ≈⟨ ∘-resp-≈ˡ #-Fixpoint ⟩
([ idC , idC ∘ (((f #) +₁ h) #) ] ∘ ((f #) +₁ h)) ∘ i₂ ≈⟨ pullʳ +₁∘i₂ ⟩
[ idC , idC ∘ (((f #) +₁ h) #) ] ∘ i₂ ∘ h ≈⟨ pullˡ inject₂ ⟩
(idC ∘ (((f #) +₁ h) #)) ∘ h ≈⟨ (identityˡ ⟩∘⟨refl) ⟩
((f #) +₁ h) # ∘ h ≈˘⟨ #-Uniformity {f = ((f #) +₁ idC) ∘ h}
{g = (f #) +₁ h}
{h = h}
(pullˡ (trans (+₁∘+₁) (+₁-cong₂ identityˡ identityʳ)))⟩
(((f #) +₁ idC) ∘ h) # ≈⟨ #-Compositionality ⟩
(([ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ])# ∘ i₂) ≈⟨ ∘-resp-≈ˡ (#-Uniformity {f = [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ]}
{g = [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]}
{h = [ i₁ , h ]}
byUni)⟩
([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ [ i₁ , h ]) ∘ i₂ ≈⟨ pullʳ inject₂ ⟩
[ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ h ≈˘⟨ inject₂ ⟩∘⟨refl ⟩
([ idC , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ] ∘ i₂) ∘ h ≈˘⟨ pushʳ inject₂ ⟩
[ idC , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ]
∘ ([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ i₂) ≈˘⟨ []-congˡ identityˡ ⟩∘⟨refl ⟩
[ idC , idC ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ]
∘ ([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ i₂) ≈˘⟨ pushˡ #-Fixpoint ⟩
[ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₂ ∎