bsc-leon-vatthauer/ElgotAlgebra.agda

225 lines
14 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

open import Level
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Algebra
open import Categories.Category
open import Categories.Category.Cartesian
open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian
open import Extensive.Bundle
import Categories.Morphism.Reasoning as MR
private
variable
o e : Level
module _ (D : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
open Cocartesian cocartesian
open Cartesian cartesian
open MR C
--*
-- F-guarded Elgot Algebra
--*
module _ {F : Endofunctor C} (FA : F-Algebra F) where
record Guarded-Elgot-Algebra : Set (o e) where
open Functor F public
open F-Algebra FA public
-- iteration operator
field
_# : {X} (X A + F₀ X) (X A)
-- _# properties
field
#-Fixpoint : {X} {f : X A + F₀ X }
f # [ idC , α F₁ (f #) ] f
#-Uniformity : {X Y} {f : X A + F₀ X} {g : Y A + F₀ Y} {h : X Y}
(idC +₁ F₁ h) f g h
f # g # h
#-Compositionality : {X Y} {f : X A + F₀ X} {h : Y X + F₀ Y}
(((f #) +₁ idC) h)# ([ (idC +₁ (F₁ i₁)) f , i₂ (F₁ i₂) ] [ i₁ , h ])# i₂
#-resp-≈ : {X} {f g : X A + F₀ X}
f g
(f #) (g #)
--*
-- (unguarded) Elgot-Algebra
--*
record Elgot-Algebra : Set (o e) where
-- Object
field
A : Obj
-- iteration operator
field
_# : {X} (X A + X) (X A)
-- _# properties
field
#-Fixpoint : {X} {f : X A + X }
f # [ idC , f # ] f
#-Uniformity : {X Y} {f : X A + X} {g : Y A + Y} {h : X Y}
(idC +₁ h) f g h
f # g # h
#-Folding : {X Y} {f : X A + X} {h : Y X + Y}
((f #) +₁ h)# [ (idC +₁ i₁) f , i₂ h ] #
#-resp-≈ : {X} {f g : X A + X} f g (f #) (g #)
open HomReasoning
open Equiv
-- Compositionality is derivable
#-Compositionality : {X Y} {f : X A + X} {h : Y X + Y}
(((f #) +₁ idC) h)# ([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂
#-Compositionality {X} {Y} {f} {h} = begin
(((f #) +₁ idC) h)# ≈⟨ #-Uniformity {f = ((f #) +₁ idC) h}
{g = (f #) +₁ h}
{h = h}
(trans (pullˡ +₁∘+₁) (+₁-cong₂ identityˡ identityʳ ⟩∘⟨refl))
((f # +₁ h)# h) ≈˘⟨ inject₂
(([ idC (f #) , (f # +₁ h)# h ] i₂)) ≈˘⟨ []∘+₁ ⟩∘⟨refl
(([ idC , ((f # +₁ h)#) ] (f # +₁ h)) i₂) ≈˘⟨ #-Fixpoint {f = (f # +₁ h) } ⟩∘⟨refl
(f # +₁ h)# i₂ ≈⟨ #-Folding ⟩∘⟨refl
([ (idC +₁ i₁) f , i₂ h ] # i₂) ≈⟨ #-Fixpoint ⟩∘⟨refl
([ idC , [ (idC +₁ i₁) f , i₂ h ] # ]
[ (idC +₁ i₁) f , i₂ h ]) i₂ ≈⟨ pullʳ inject₂
[ idC , [ (idC +₁ i₁) f , i₂ h ] # ] (i₂ h) ≈⟨ pullˡ inject₂
([ (idC +₁ i₁) f , i₂ h ] # h) ≈˘⟨ refl⟩∘⟨ inject₂ {f = i₁} {g = h}
([ (idC +₁ i₁) f , i₂ h ] # [ i₁ , h ] i₂) ≈˘⟨ pushˡ (#-Uniformity {f = [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ]}
{g = [ (idC +₁ i₁) f , i₂ h ]}
{h = [ i₁ , h ]}
(begin
(idC +₁ [ i₁ , h ])
[ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ] ≈⟨ refl⟩∘⟨ ∘[]
(idC +₁ [ i₁ , h ]) [ [ (idC +₁ i₁) f , i₂ i₂ ] i₁
, [ (idC +₁ i₁) f , i₂ i₂ ] h ] ≈⟨ refl⟩∘⟨ []-congʳ inject₁
(idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f
, [ (idC +₁ i₁) f , i₂ i₂ ] h ] ≈⟨ ∘[]
[ (idC +₁ [ i₁ , h ]) ((idC +₁ i₁) f)
, (idC +₁ [ i₁ , h ]) ([ (idC +₁ i₁) f , i₂ i₂ ] h) ] ≈⟨ []-cong₂ (pullˡ +₁∘+₁) (pullˡ ∘[])
[ ((idC idC) +₁ ([ i₁ , h ] i₁)) f
, [ (idC +₁ [ i₁ , h ]) ((idC +₁ i₁) f)
, (idC +₁ [ i₁ , h ]) (i₂ i₂) ] h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² (inject₁)))
(∘-resp-≈ˡ ([]-cong₂ (pullˡ +₁∘+₁) (pullˡ inject₂)))
[ (idC +₁ i₁) f , ([ ((idC idC) +₁ ([ i₁ , h ] i₁)) f
, (i₂ [ i₁ , h ]) i₂ ]) h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² inject₁))
(pullʳ inject₂)))
[ (idC +₁ i₁) f , [ (idC +₁ i₁) f , i₂ h ] h ] ≈˘⟨ []-congʳ inject₁
[ [ (idC +₁ i₁) f , i₂ h ] i₁
, [ (idC +₁ i₁) f , i₂ h ] h ] ≈˘⟨ ∘[]
[ (idC +₁ i₁) f , i₂ h ] [ i₁ , h ] ))
([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂
-- every elgot-algebra comes with a divergence constant
!ₑ : A
!ₑ = i₂ #
--*
-- Here follows the proof of equivalence for unguarded and Id-guarded Elgot-Algebras
--*
private
-- identity algebra
Id-Algebra : Obj F-Algebra (idF {C = C})
Id-Algebra A = record
{ A = A
; α = idC
}
where open Functor (idF {C = C})
-- constructing an Id-Guarded Elgot-Algebra from an unguarded one
Unguarded→Id-Guarded : (EA : Elgot-Algebra) Guarded-Elgot-Algebra (Id-Algebra (Elgot-Algebra.A EA))
Unguarded→Id-Guarded ea = record
{ _# = _#
; #-Fixpoint = λ {X} {f} trans #-Fixpoint (sym (∘-resp-≈ˡ ([]-congˡ identityˡ)))
; #-Uniformity = #-Uniformity
; #-Compositionality = #-Compositionality
; #-resp-≈ = #-resp-≈
}
where
open Elgot-Algebra ea
open HomReasoning
open Equiv
-- constructing an unguarded Elgot-Algebra from an Id-Guarded one
Id-Guarded→Unguarded : {A : Obj} Guarded-Elgot-Algebra (Id-Algebra A) Elgot-Algebra
Id-Guarded→Unguarded gea = record
{ _# = _#
; #-Fixpoint = λ {X} {f} trans #-Fixpoint (∘-resp-≈ˡ ([]-congˡ identityˡ))
; #-Uniformity = #-Uniformity
; #-Folding = λ {X} {Y} {f} {h} begin
((f #) +₁ h) # ≈˘⟨ +-g-η
[ (f # +₁ h)# i₁ , (f # +₁ h)# i₂ ] ≈⟨ []-cong₂ left right
[ [ (idC +₁ i₁) f , i₂ h ] # i₁ , [ (idC +₁ i₁) f , i₂ h ] # i₂ ] ≈⟨ +-g-η
([ (idC +₁ i₁) f , i₂ h ] #)
; #-resp-≈ = #-resp-≈
}
where
open Guarded-Elgot-Algebra gea
open HomReasoning
open Equiv
left : {X Y} {f : X A + X} {h : Y X + Y}
(f # +₁ h)# i₁ [ (idC +₁ i₁) f , i₂ h ] # i₁
left {X} {Y} {f} {h} = begin
(f # +₁ h)# i₁ ≈⟨ #-Fixpoint ⟩∘⟨refl
([ idC , idC (((f #) +₁ h) #) ] ((f #) +₁ h)) i₁ ≈⟨ pullʳ +₁∘i₁
[ idC , idC (((f #) +₁ h) #) ] (i₁ f #) ≈⟨ cancelˡ inject₁
(f #) ≈⟨ #-Uniformity {f = f}
{g = [ (idC +₁ i₁) f , i₂ h ]}
{h = i₁}
(sym inject₁)
([ (idC +₁ i₁) f , i₂ h ] # i₁)
byUni : {X Y} {f : X A + X} {h : Y X + Y}
(idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ] [ (idC +₁ i₁) f , i₂ h ] [ i₁ , h ]
byUni {X} {Y} {f} {h} = begin
(idC +₁ [ i₁ , h ])
[ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ] ≈⟨ ∘-resp-≈ʳ (trans ∘[] ([]-congʳ inject₁))
(idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f
, [ (idC +₁ i₁) f , i₂ i₂ ] h ] ≈⟨ ∘[]
[ (idC +₁ [ i₁ , h ]) ((idC +₁ i₁) f)
, (idC +₁ [ i₁ , h ]) ([ (idC +₁ i₁) f , i₂ i₂ ] h) ] ≈⟨ []-cong₂ sym-assoc sym-assoc
[ ((idC +₁ [ i₁ , h ]) (idC +₁ i₁)) f
, ((idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f , i₂ i₂ ]) h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ ∘[])
[ ((idC idC) +₁ ([ i₁ , h ] i₁)) f
, [ (idC +₁ [ i₁ , h ]) ((idC +₁ i₁) f)
, (idC +₁ [ i₁ , h ]) (i₂ i₂) ] h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² (inject₁)))
(∘-resp-≈ˡ ([]-cong₂ sym-assoc sym-assoc))
[ (idC +₁ i₁) f
, [ ((idC +₁ [ i₁ , h ]) (idC +₁ i₁)) f
, ((idC +₁ [ i₁ , h ]) i₂) i₂ ] h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ inject₂)))
[ (idC +₁ i₁) f
, [ ((idC idC) +₁ ([ i₁ , h ] i₁)) f
, (i₂ [ i₁ , h ]) i₂ ] h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² inject₁)) assoc))
[ (idC +₁ i₁) f
, [ (idC +₁ i₁) f
, i₂ ([ i₁ , h ] i₂) ] h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-congˡ (∘-resp-≈ʳ inject₂)))
[ (idC +₁ i₁) f , [ (idC +₁ i₁) f , i₂ h ] h ] ≈˘⟨ []-congʳ inject₁
[ [ (idC +₁ i₁) f , i₂ h ] i₁
, [ (idC +₁ i₁) f , i₂ h ] h ] ≈˘⟨ ∘[]
[ (idC +₁ i₁) f , i₂ h ] [ i₁ , h ]
right : {X Y} {f : X A + X} {h : Y X + Y}
(f # +₁ h)# i₂ [ (idC +₁ i₁) f , i₂ h ] # i₂
right {X} {Y} {f} {h} = begin
(f # +₁ h)# i₂ ≈⟨ ∘-resp-≈ˡ #-Fixpoint
([ idC , idC (((f #) +₁ h) #) ] ((f #) +₁ h)) i₂ ≈⟨ pullʳ +₁∘i₂
[ idC , idC (((f #) +₁ h) #) ] i₂ h ≈⟨ pullˡ inject₂
(idC (((f #) +₁ h) #)) h ≈⟨ (identityˡ ⟩∘⟨refl)
((f #) +₁ h) # h ≈˘⟨ #-Uniformity {f = ((f #) +₁ idC) h}
{g = (f #) +₁ h}
{h = h}
(pullˡ (trans (+₁∘+₁) (+₁-cong₂ identityˡ identityʳ)))
(((f #) +₁ idC) h) # ≈⟨ #-Compositionality
(([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂) ≈⟨ ∘-resp-≈ˡ (#-Uniformity {f = [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ]}
{g = [ (idC +₁ i₁) f , i₂ h ]}
{h = [ i₁ , h ]}
byUni)
([ (idC +₁ i₁) f , i₂ h ] # [ i₁ , h ]) i₂ ≈⟨ pullʳ inject₂
[ (idC +₁ i₁) f , i₂ h ] # h ≈˘⟨ inject₂ ⟩∘⟨refl
([ idC , [ (idC +₁ i₁) f , i₂ h ] # ] i₂) h ≈˘⟨ pushʳ inject₂
[ idC , [ (idC +₁ i₁) f , i₂ h ] # ]
([ (idC +₁ i₁) f , i₂ h ] i₂) ≈˘⟨ []-congˡ identityˡ ⟩∘⟨refl
[ idC , idC [ (idC +₁ i₁) f , i₂ h ] # ]
([ (idC +₁ i₁) f , i₂ h ] i₂) ≈˘⟨ pushˡ #-Fixpoint
[ (idC +₁ i₁) f , i₂ h ] # i₂