bsc-leon-vatthauer/agda/src/Monad/Instance/Setoids/Delay.lagda.md
2024-02-15 16:03:26 +01:00

460 lines
26 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

```agda
{-# OPTIONS --guardedness #-}
open import Level renaming (zero to -zero; suc to -suc)
open import Function.Bundles using (_⟨$⟩_) renaming (Func to _⟶_)
open import Function.Construct.Identity renaming (function to idₛ)
open import Function.Construct.Setoid renaming (setoid to _⇨_; _∙_ to _∘_)
open import Relation.Binary
open import Data.Sum using (_⊎_; inj₁; inj₂)
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_)
open import Function using (id)
open import Categories.Monad
open import Categories.Category.Instance.Setoids
open import Categories.NaturalTransformation hiding (id)
open import Data.Product
open import Data.Product.Relation.Binary.Pointwise.NonDependent
open import Category.Ambient.Setoids
module Monad.Instance.Setoids.Delay {c } where
open Setoid using () renaming (Carrier to _; _≈_ to [_][_≡_])
open module eq (S : Setoid c (c ⊔ )) = IsEquivalence (Setoid.isEquivalence S) using () renaming (refl to ≡-refl; sym to ≡-sym; trans to ≡-trans)
mutual
data Delay (A : Set c) : Set c where
now : A → Delay A
later : Delay A → Delay A
record Delay (A : Set c) : Set c where
coinductive
field
force : Delay A
open Delay public
module Bisimilarity (A : Setoid c (c ⊔ )) where
never : Delay A
never : Delay A
never = later never
force never = never
-- Removes a later constructor, if possible.
drop-later : Delay A → Delay A
drop-later (now x) = now x
drop-later (later x) = force x
mutual
-- adapted from https://www.cse.chalmers.se/nad/listings/delay-monad/Delay-monad.Bisimilarity.html
data __ : Delay A → Delay A → Set (c ⊔ ) where
now : ∀ {x y} → [ A ][ x ≡ y ] → now x now y
later : ∀ {x y} → force x force y → later x later y
record __ (x y : Delay A ) : Set (c ⊔ ) where
coinductive
field
force : x y
open __ public
-- strong bisimilarity of now and later leads to a clash
nowlater : ∀ {'}{Z : Set '}{x : A }{y : Delay A } → now x later y → Z
nowlater ()
-refl : ∀ {x : Delay A } → x x
-refl : ∀ {x : Delay A } → x x
-refl {now x} = now (≡-refl A)
-refl {later x} = later -refl
force (-refl {now x}) = now (≡-refl A)
force (-refl {later x}) = later -refl
-sym : ∀ {x y : Delay A } → x y → y x
-sym : ∀ {x y : Delay A } → x y → y x
-sym (now x≡y) = now (≡-sym A x≡y)
-sym (later fxfy) = later (-sym fxfy)
force (-sym xy) = -sym (force xy)
-trans : ∀ {x y z : Delay A } → x y → y z → x z
-trans : ∀ {x y z : Delay A } → x y → y z → x z
-trans (now x≡y) (now y≡z) = now (≡-trans A x≡y y≡z)
-trans (later xy) (later yz) = later (-trans xy yz)
force (-trans xy yz) = -trans (force xy) (force yz)
data _↓_ : Delay A A → Set (c ⊔ ) where
now↓ : ∀ {x y} (x≡y : [ A ][ x ≡ y ]) → now x ↓ y
later↓ : ∀ {x y} (x↓y : (force x) ↓ y) → later x ↓ y
unique↓ : ∀ {a : Delay A } {x y : A } → a ↓ x → a ↓ y → [ A ][ x ≡ y ]
unique↓ (now↓ a≡x) (now↓ a≡y) = ≡-trans A (≡-sym A a≡x) a≡y
unique↓ (later↓ fb↓x) (later↓ fb↓y) = unique↓ fb↓x fb↓y
mutual
data _≈_ : Delay A → Delay A → Set (c ⊔ ) where
↓≈ : ∀ {x y a b} (a≡b : [ A ][ a ≡ b ]) (x↓a : x ↓ a) (y↓b : y ↓ b) → x ≈ y
later≈ : ∀ {x y} (x≈y : force x ≈′ force y) → later x ≈ later y
record _≈_ (x y : Delay A ) : Set (c ⊔ ) where
coinductive
field
force≈ : x ≈ y
open _≈_ public
≈→≈′ : ∀ {x y : Delay A } → x ≈ y → x ≈′ y
force≈ (≈→≈′ x≈y) = x≈y
≡↓ : ∀ {x y : A } {z : Delay A } → [ A ][ x ≡ y ] → z ↓ x → z ↓ y
≡↓ {x} {y} {.(now _)} x≡y (now↓ a≡x) = now↓ (≡-trans A a≡x x≡y)
≡↓ {x} {y} {.(later _)} x≡y (later↓ z↓x) = later↓ (≡↓ x≡y z↓x)
≈↓ : ∀ {x y : Delay A } {a : A } → x ≈ y → x ↓ a → y ↓ a
≈↓ (↓≈ c≡b (now↓ x≡c) y↓b) (now↓ x≡a) = ≡↓ (≡-trans A (≡-trans A (≡-sym A c≡b) (≡-sym A x≡c)) x≡a) y↓b
≈↓ (↓≈ c≡b (later↓ x↓c) y↓b) (later↓ x↓a) = ≡↓ (≡-trans A (≡-sym A c≡b) (≡-sym A (unique↓ x↓a x↓c))) y↓b
≈↓ (later≈ fx≈fy) (later↓ fx↓a) = later↓ (≈↓ (force≈ fx≈fy) fx↓a)
≈-refl : ∀ {x : Delay A } → x ≈ x
≈′-refl : ∀ {x : Delay A } → x ≈′ x
≈-refl {now x} = ↓≈ (≡-refl A) (now↓ (≡-refl A)) (now↓ (≡-refl A))
≈-refl {later x} = later≈ ≈′-refl
force≈ ≈′-refl = ≈-refl
≈-sym : ∀ {x y : Delay A } → x ≈ y → y ≈ x
≈′-sym : ∀ {x y : Delay A } → x ≈′ y → y ≈′ x
≈-sym (↓≈ a≡b x↓a y↓b) = ↓≈ (≡-sym A a≡b) y↓b x↓a
≈-sym (later≈ x≈y) = later≈ (≈′-sym x≈y)
force≈ (≈′-sym xy) = ≈-sym (force≈ xy)
≈-trans : ∀ {x y z : Delay A } → x ≈ y → y ≈ z → x ≈ z
≈′-trans : ∀ {x y z : Delay A } → x ≈′ y → y ≈′ z → x ≈′ z
≈-trans (↓≈ a≡b x↓a y↓b) (↓≈ c≡d y↓c z↓d) = ↓≈ (≡-trans A (≡-trans A a≡b (unique↓ y↓b y↓c)) c≡d) x↓a z↓d
≈-trans (↓≈ a≡b z↓a (later↓ x↓b)) (later≈ x≈y) = ↓≈ a≡b z↓a (later↓ (≈↓ (force≈ x≈y) x↓b))
≈-trans (later≈ x≈y) (↓≈ a≡b (later↓ y↓a) z↓b) = ↓≈ a≡b (later↓ (≈↓ (≈-sym (force≈ x≈y)) y↓a)) z↓b
≈-trans (later≈ x≈y) (later≈ y≈z) = later≈ (≈′-trans x≈y y≈z)
force≈ (≈′-trans x≈y y≈z) = ≈-trans (force≈ x≈y) (force≈ y≈z)
mutual
data _≲_ : Delay A → Delay A → Set (c ⊔ ) where
↓≲ : ∀ {y a} (y↓a : y ↓ a) → now a ≲ y
later≲ : ∀ {x y} (x≈y : force x ≲′ force y) → later x ≲ later y
record _≲_ (x y : Delay A ) : Set (c ⊔ ) where
coinductive
field
force≲ : x ≲ y
open _≲_ public
open Bisimilarity renaming (_≈_ to [_][_≈_]; _≈_ to [_][_≈_]; __ to [_][__]; __ to [_][__]; _↓_ to [_][_↓_]; _≲_ to [_][_≲_]; _≲_ to [_][_≲_])
module DelayMonad where
Delay≈ : Setoid c (c ⊔ ) → Setoid c (c ⊔ )
Delay≈ A = record { Carrier = Delay A ; _≈_ = [_][_≈_] A ; isEquivalence = record { refl = ≈-refl A ; sym = ≈-sym A ; trans = ≈-trans A } }
Delay : Setoid c (c ⊔ ) → Setoid c (c ⊔ )
Delay A = record { Carrier = Delay A ; _≈_ = [_][__] A ; isEquivalence = record { refl = -refl A ; sym = -sym A ; trans = -trans A } }
<_> = _⟨$⟩_
open _⟶_ using (cong)
∼⇒≈ : ∀ {A : Setoid c (c ⊔ )} {x y : Delay A } → [ A ][ x y ] → [ A ][ x ≈ y ]
∼′⇒≈′ : ∀ {A : Setoid c (c ⊔ )} {x y : Delay A } → [ A ][ x y ] → [ A ][ x ≈′ y ]
∼⇒≈ {A} {.(now _)} {.(now _)} (now a≡b) = ↓≈ a≡b (now↓ (≡-refl A)) (now↓ (≡-refl A))
∼⇒≈ {A} {.(later _)} {.(later _)} (later xy) = later≈ (∼′⇒≈′ xy)
force≈ (∼′⇒≈′ {A} {x} {y} xy) = ∼⇒≈ (force xy)
now-cong : ∀ {A : Setoid c (c ⊔ )} {x y : A } → [ A ][ x ≡ y ] → [ A ][ now x ≈ now y ]
now-cong {A} {x} {y} x≡y = ↓≈ x≡y (now↓ (≡-refl A)) (now↓ (≡-refl A))
later-cong : ∀ {A : Setoid c (c ⊔ )} {x y : Delay A } → [ A ][ force x ≈′ force y ] → [ A ][ later x ≈ later y ]
later-cong {A} {x} {y} x≈y = later≈ x≈y
now-cong : ∀ {A : Setoid c (c ⊔ )} {x y : A } → [ A ][ x ≡ y ] → [ A ][ now x now y ]
now-cong {A} {x} {y} x≡y = now x≡y
now-inj : ∀ {A : Setoid c (c ⊔ )} {x y : A } → [ A ][ now x ≈ now y ] → [ A ][ x ≡ y ]
now-inj {A} {x} {y} (↓≈ a≡b (now↓ x≡a) (now↓ y≡b)) = ≡-trans A x≡a (≡-trans A a≡b (≡-sym A y≡b))
liftF : ∀ {A B : Set c} → (A → B) → Delay A → Delay B
liftF : ∀ {A B : Set c} → (A → B) → Delay A → Delay B
liftF f (now x) = now (f x)
liftF f (later x) = later (liftF f x)
force (liftF f x) = liftF f (force x)
lift↓ : ∀ {A B : Setoid c (c ⊔ )} (f : A ⟶ B) {x : Delay A } {b : A } → [ A ][ x ↓ b ] → [ B ][ (liftF (< f >) x) ↓ (f ⟨$⟩ b) ]
lift↓ {A} {B} f {now x} {b} (now↓ x≡a) = now↓ (cong f x≡a)
lift↓ {A} {B} f {later x} {b} (later↓ x↓b) = later↓ (lift↓ f x↓b)
lift-cong : ∀ {A B : Setoid c (c ⊔ )} (f : A ⟶ B) {x y : Delay A } → [ A ][ x ≈ y ] → [ B ][ liftF < f > x ≈ liftF < f > y ]
lift-cong : ∀ {A B : Setoid c (c ⊔ )} (f : A ⟶ B) {x y : Delay A } → [ A ][ x ≈′ y ] → [ B ][ liftF < f > x ≈′ liftF < f > y ]
lift-cong {A} {B} f {now x} {now y} (↓≈ a≡b (now↓ x≡a) (now↓ y≡b)) = ↓≈ (cong f a≡b) (now↓ (cong f x≡a)) (now↓ (cong f y≡b))
lift-cong {A} {B} f {now x} {later y} (↓≈ a≡b (now↓ x≡a) (later↓ y↓b)) = ↓≈ (cong f a≡b) (now↓ (cong f x≡a)) (later↓ (lift↓ f y↓b))
lift-cong {A} {B} f {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ (cong f a≡b) (later↓ (lift↓ f x↓a)) (now↓ (cong f y≡b))
lift-cong {A} {B} f {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (lift-cong f (≈→≈′ A (↓≈ a≡b x↓a y↓b)))
lift-cong {A} {B} f {later x} {later y} (later≈ x≈y) = later≈ (lift-cong {A} {B} f x≈y)
force≈ (lift-cong {A} {B} f {x} {y} x≈y) = lift-cong f (force≈ x≈y)
liftFₛ : ∀ {A B : Setoid c (c ⊔ )} → A ⟶ B → Delay≈ A ⟶ Delay≈ B
liftFₛ {A} {B} f = record { to = liftF < f > ; cong = lift-cong f }
liftFₛ : ∀ {A B : Setoid c (c ⊔ )} → A ⟶ B → Delay A ⟶ Delay B
liftFₛ {A} {B} f = record { to = liftF < f > ; cong = -cong }
where
-cong : ∀ {x y} → [ A ][ x y ] → [ B ][ liftF < f > x liftF < f > y ]
-cong : ∀ {x y} → [ A ][ x y ] → [ B ][ liftF < f > x liftF < f > y ]
force (-cong {x} {y} xy) = -cong (force xy)
-cong {.(now _)} {.(now _)} (now x≡y) = now-cong (cong f x≡y)
-cong {.(later _)} {.(later _)} (later xy) = later (-cong xy)
lift-comp : ∀ {A B C : Setoid c (c ⊔ )} {f : A ⟶ B} {g : B ⟶ C} {x y : Delay A } → [ A ][ x y ] → [ C ][ liftFₛ (g ∘ f) ⟨$⟩ x (liftFₛ g ∘ liftFₛ f) ⟨$⟩ y ]
lift-comp : ∀ {A B C : Setoid c (c ⊔ )} {f : A ⟶ B} {g : B ⟶ C} {x y : Delay A } → [ A ][ x y ] → [ C ][ liftFₛ (g ∘ f) ⟨$⟩ x (liftFₛ g ∘ liftFₛ f) ⟨$⟩ y ]
lift-comp {A} {B} {C} {f} {g} {.(now _)} {.(now _)} (now x≡y) = now-cong (cong g (cong f (x≡y)))
lift-comp {A} {B} {C} {f} {g} {.(later _)} {.(later _)} (later xy) = later (lift-comp {A} {B} {C} {f} {g} xy)
force (lift-comp {A} {B} {C} {f} {g} {x} {y} xy) = lift-comp {A} {B} {C} {f} {g} {x} {y} (force xy)
-- this needs polymorphic universe levels
_≋_ : ∀ {c' '} {A B : Setoid c' '} → A ⟶ B → A ⟶ B → Set (c' ⊔ ')
_≋_ {c'} {'} {A} {B} f g = Setoid._≈_ (A ⇨ B) f g
later-self : ∀ {A : Setoid c (c ⊔ )} {x : Delay A } → [ A ][ force x ≈ later x ]
later-self {A} {x} with force x in eqx
... | now y = ↓≈ (≡-refl A) (now↓ (≡-refl A)) (later↓ helper)
where
helper : [ A ][ force x ↓ y ]
helper rewrite eqx = now↓ (≡-refl A)
... | later y = later≈ helper
where
helper : [ A ][ force y ≈′ force x ]
force≈ (helper) rewrite eqx = later-self {x = y}
later-eq : ∀ {A : Setoid c (c ⊔ )} {x : Delay A } {y : Delay A } → [ A ][ later x ≈ y ] → [ A ][ force x ≈ y ]
later-eq {A} {x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ a≡b x↓a (now↓ y≡b)
later-eq {A} {x} {later y} x≈ly = ≈-trans A later-self x≈ly
lift-id : ∀ {A : Setoid c (c ⊔ )} → (liftFₛ (idₛ A)) ≋ (idₛ (Delay≈ A))
lift-id : ∀ {A : Setoid c (c ⊔ )} {x : Delay A } → [ A ][ (liftF id) x ≈′ id x ]
lift-id {A} {now x} = ≈-refl A
lift-id {A} {later x} = later≈ lift-id
force≈ (lift-id {A} {x}) = lift-id
lift-comp : ∀ {A B C : Setoid c (c ⊔ )} {f : A ⟶ B} {g : B ⟶ C} → liftFₛ (g ∘ f) ≋ (liftFₛ g ∘ liftFₛ f)
lift-comp : ∀ {A B C : Setoid c (c ⊔ )} {f : A ⟶ B} {g : B ⟶ C} {x : Delay A } → [ C ][ liftFₛ (g ∘ f) ⟨$⟩ x ≈′ (liftFₛ g ∘ liftFₛ f) ⟨$⟩ x ]
force≈ (lift-comp {A} {B} {C} {f} {g} {x}) = lift-comp {A} {B} {C} {f} {g}
lift-comp {A} {B} {C} {f} {g} {now x} = ≈-refl C
lift-comp {A} {B} {C} {f} {g} {later x} = later≈ (lift-comp {A} {B} {C} {f} {g})
lift-resp-≈ : ∀ {A B : Setoid c (c ⊔ )} {f g : A ⟶ B} → f ≋ g → liftFₛ f ≋ liftFₛ g
lift-resp-≈′ : ∀ {A B : Setoid c (c ⊔ )} {f g : A ⟶ B} → f ≋ g → ∀ {x : Delay A } → [ B ][ liftFₛ f ⟨$⟩ x ≈′ liftFₛ g ⟨$⟩ x ]
lift-resp-≈ {A} {B} {f} {g} f≋g {now x} = now-cong f≋g
lift-resp-≈ {A} {B} {f} {g} f≋g {later x} = later≈ (lift-resp-≈′ {A} {B} {f} {g} f≋g)
force≈ (lift-resp-≈′ {A} {B} {f} {g} f≋g {x}) = lift-resp-≈ {A} {B} {f} {g} f≋g
ηₛ : ∀ (A : Setoid c (c ⊔ )) → A ⟶ Delay≈ A
ηₛ A = record { to = now ; cong = now-cong }
η-natural : ∀ {A B : Setoid c (c ⊔ )} (f : A ⟶ B) → (ηₛ B ∘ f) ≋ (liftFₛ f ∘ ηₛ A)
η-natural {A} {B} f {x} = now-cong (cong f (≡-refl A))
μ : ∀ {A : Setoid c (c ⊔ )} → Delay (Delay A ) → Delay A
μ′ : ∀ {A : Setoid c (c ⊔ )} → Delay (Delay A ) → Delay A
force (μ′ {A} x) = μ {A} (force x)
μ {A} (now x) = x
μ {A} (later x) = later (μ′ {A} x)
μ↓-trans : ∀ {A : Setoid c (c ⊔ )} {x : Delay (Delay A )} {y : Delay A } {b : A } → [ Delay≈ A ][ x ↓ y ] → [ A ][ y ↓ b ] → [ A ][ (μ {A} x) ↓ b ]
μ↓-trans {A} {now x} {y} {b} (now↓ x≡y) y↓b = ≈↓ A (≈-sym A x≡y) y↓b
μ↓-trans {A} {later x} {now y} {b} (later↓ x↓y) (now↓ y≡b) = later↓ (μ↓-trans x↓y (now↓ y≡b))
μ↓-trans {A} {later x} {later y} {b} (later↓ x↓y) (later↓ y↓b) = later↓ (μ↓-trans (≡↓ (Delay≈ A) (≈-sym A later-self) x↓y) y↓b)
μ↓ : ∀ {A : Setoid c (c ⊔ )} {x : Delay (Delay A )} {y : Delay A } → [ Delay≈ A ][ x ↓ y ] → [ A ][ (μ {A} x) ≈ y ]
μ↓′ : ∀ {A : Setoid c (c ⊔ )} {x : Delay (Delay A )} {y : Delay A } → [ Delay≈ A ][ x ↓ y ] → [ A ][ (μ {A} x) ≈′ y ]
force≈ (μ↓′ {A} {x} {y} x↓y) = μ↓ x↓y
μ↓ {A} {now x} {y} (now↓ x≡y) = x≡y
μ↓ {A} {later x} {now y} (later↓ x↓y) = ≈-trans A (≈-sym A later-self) (↓≈ (≡-refl A) (μ↓-trans x↓y (now↓ (≡-refl A))) (now↓ (≡-refl A)))
μ↓ {A} {later x} {later y} (later↓ x↓y) = later≈ (μ↓′ {A} {force x} {force y} (≡↓ (Delay≈ A) (≈-sym A later-self) x↓y))
μ-cong : ∀ (A : Setoid c (c ⊔ )) {x y : Delay (Delay A )} → [ Delay≈ A ][ x ≈ y ] → [ A ][ μ {A} x ≈ μ {A} y ]
μ-cong : ∀ (A : Setoid c (c ⊔ )) {x y : Delay (Delay A )} → [ Delay≈ A ][ x ≈′ y ] → [ A ][ μ {A} x ≈′ μ {A} y ]
μ-cong A {now x} {now y} x≈y = now-inj x≈y
μ-cong A {now x} {later y} (↓≈ a≡b (now↓ x≡a) (later↓ y↓b)) = ≈-trans A (≈-sym A (μ↓ (≡↓ (Delay≈ A) (≈-trans A (≈-sym A a≡b) (≈-sym A x≡a)) y↓b))) later-self
μ-cong A {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ≈-trans A (≈-sym A later-self) (μ↓ (≡↓ (Delay≈ A) (≈-trans A a≡b (≈-sym A y≡b)) x↓a))
μ-cong A {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (μ-cong A (≈→≈′ (Delay≈ A) (↓≈ a≡b x↓a y↓b)))
μ-cong A {later x} {later y} (later≈ x≈y) = later≈ (μ-cong A x≈y)
force≈ (μ-cong A {x} {y} x≈y) = μ-cong A (force≈ x≈y)
μₛ : ∀ (A : Setoid c (c ⊔ )) → Delay≈ (Delay≈ A) ⟶ Delay≈ A
μₛ A = record { to = μ {A} ; cong = μ-cong A }
μₛ∼ : ∀ (A : Setoid c (c ⊔ )) → Delay (Delay A) ⟶ Delay A
μₛ∼ A = record { to = μ {A} ; cong = μ-cong A }
where
μ-cong : ∀ (A : Setoid c (c ⊔ )) {x y : Delay (Delay A )} → [ Delay A ][ x y ] → [ A ][ μ {A} x μ {A} y ]
μ-cong : ∀ (A : Setoid c (c ⊔ )) {x y : Delay (Delay A )} → [ Delay A ][ x y ] → [ A ][ μ {A} x μ {A} y ]
force (μ-cong A {x} {y} xy) = μ-cong A (force xy)
μ-cong A {.(now _)} {.(now _)} (now xy) = xy
μ-cong A {.(later _)} {.(later _)} (later xy) = later (μ-cong A xy)
μ-natural : ∀ {A B : Setoid c (c ⊔ )} (f : A ⟶ B) → (μₛ B ∘ liftFₛ (liftFₛ f)) ≋ (liftFₛ f ∘ μₛ A)
μ-natural : ∀ {A B : Setoid c (c ⊔ )} (f : A ⟶ B) → ∀ {x : Delay (Delay A )} → [ B ][ (μₛ B ∘ liftFₛ (liftFₛ f)) ⟨$⟩ x ≈′ (liftFₛ f ∘ μₛ A) ⟨$⟩ x ]
force≈ (μ-natural {A} {B} f {x}) = μ-natural f {x}
μ-natural {A} {B} f {now x} = ≈-refl B
μ-natural {A} {B} f {later x} = later≈ (μ-natural f {force x})
μ-assoc' : ∀ {A : Setoid c (c ⊔ )} {x : Delay (Delay (Delay A ))} → [ A ][ (μₛ A ∘ (liftFₛ (μₛ A))) ⟨$⟩ x (μₛ A ∘ μₛ (Delay≈ A)) ⟨$⟩ x ]
μ-assoc' : ∀ {A : Setoid c (c ⊔ )} {x : Delay (Delay (Delay A ))} → [ A ][ (μₛ A ∘ (liftFₛ (μₛ A))) ⟨$⟩ x (μₛ A ∘ μₛ (Delay≈ A)) ⟨$⟩ x ]
force (μ-assoc' {A} {x}) = μ-assoc' {A} {x}
μ-assoc' {A} {now x} = -refl A
μ-assoc' {A} {later x} = later (μ-assoc' {A} {force x})
μ-assoc : ∀ {A : Setoid c (c ⊔ )} → (μₛ A ∘ (liftFₛ (μₛ A))) ≋ (μₛ A ∘ μₛ (Delay≈ A))
μ-assoc {A} {x} = ∼⇒≈ (μ-assoc' {A} {x})
identityˡ↓ : ∀ {A : Setoid c (c ⊔ )} {x : Delay A } {y : A } → [ A ][ x ↓ y ] → [ A ][ ((μₛ A) ⟨$⟩ ((liftFₛ (ηₛ A)) ⟨$⟩ x)) ↓ y ]
identityˡ↓ {A} {now x} {y} x↓y = x↓y
identityˡ↓ {A} {later x} {y} (later↓ x↓y) = later↓ (identityˡ↓ x↓y)
identityˡ : ∀ {A : Setoid c (c ⊔ )} {x : Delay A } → [ A ][ (μₛ A ∘ liftFₛ (ηₛ A)) ⟨$⟩ x x ]
identityˡ : ∀ {A : Setoid c (c ⊔ )} {x : Delay A } → [ A ][ (μₛ A ∘ liftFₛ (ηₛ A)) ⟨$⟩ x x ]
identityˡ {A} {now x} = -refl A
identityˡ {A} {later x} = later identityˡ
force (identityˡ {A} {x}) = identityˡ
identityˡ : ∀ {A : Setoid c (c ⊔ )} → (μₛ A ∘ liftFₛ (ηₛ A)) ≋ idₛ (Delay≈ A)
identityˡ : ∀ {A : Setoid c (c ⊔ )} {x : Delay A } → [ A ][ (μₛ A ∘ liftFₛ (ηₛ A)) ⟨$⟩ x ≈′ x ]
force≈ (identityˡ {A} {x}) = identityˡ
identityˡ {A} {now x} = ≈-refl A
identityˡ {A} {later x} = later≈ identityˡ
identityʳ : ∀ {A : Setoid c (c ⊔ )} → (μₛ A ∘ ηₛ (Delay≈ A)) ≋ idₛ (Delay≈ A)
identityʳ {A} {now x} = ≈-refl A
identityʳ {A} {later x} = ≈-refl A
delayMonad : Monad (Setoids c (c ⊔ ))
delayMonad = record
{ F = record
{ F₀ = Delay≈
; F₁ = liftFₛ
; identity = lift-id
; homomorphism = λ {X} {Y} {Z} {f} {g} → lift-comp {X} {Y} {Z} {f} {g}
; F-resp-≈ = λ {A} {B} {f} {g} → lift-resp-≈ {A} {B} {f} {g}
}
; η = ntHelper (record { η = ηₛ ; commute = η-natural })
; μ = ntHelper (record { η = μₛ ; commute = μ-natural })
; assoc = λ {A} {x} → μ-assoc {A} {x}
; sym-assoc = λ {A} {x} → ≈-sym A (μ-assoc {A} {x})
; identityˡ = identityˡ
; identityʳ = identityʳ
}
open DelayMonad
module extra {A : Setoid c (c ⊔ )} where
≲→≈ : {x y : Delay A } → [ A ][ x ≲ y ] → [ A ][ x ≈ y ]
≲→≈′ : {x y : Delay A } → [ A ][ x ≲′ y ] → [ A ][ x ≈′ y ]
≲→≈ (↓≲ y↓a) = ↓≈ (≡-refl A) (now↓ (≡-refl A)) y↓a
≲→≈ (later≲ x≈y) = later≈ (≲→≈′ x≈y)
force≈ (≲→≈′ x≲y) = ≲→≈ (force≲ x≲y)
race : Delay A → Delay A → Delay A
race : Delay A → Delay A → Delay A
race (now a) _ = now a
race (later x) (now a) = now a
race (later x) (later y) = later (race x y)
force (race x y) = race (force x) (force y)
race-sym : ∀ {x y} → [ A ][ x y ] → [ A ][ race x y race y x ]
race-sym : ∀ {x y} → [ A ][ x y ] → [ A ][ race x y race y x ]
force (race-sym {x} {y} xy) = race-sym {x} {y} (force xy)
race-sym {now x} {now y} xy = xy
race-sym {now x} {later y} xy = -refl A
race-sym {later x} {now y} xy = -refl A
race-sym {later x} {later y} (later xy) = later (race-sym xy)
race-sym≈ : ∀ {x y} → [ A ][ x ≈ y ] → [ A ][ race x y race y x ]
race-sym≈ : ∀ {x y} → [ A ][ x ≈′ y ] → [ A ][ race x y race y x ]
force (race-sym≈ {x} {y} xy) = race-sym≈ {x} {y} (force≈ xy)
race-sym≈ {now x} {now y} (↓≈ a≡b (now↓ x≡a) (now↓ y≡b)) = now (≡-trans A x≡a (≡-trans A a≡b (≡-sym A y≡b)))
race-sym≈ {now x} {later y} x≈y = -refl A
race-sym≈ {later x} {now y} x≈y = -refl A
race-sym≈ {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later (race-sym≈ (≈→≈′ A (↓≈ a≡b x↓a y↓b)))
race-sym≈ {later x} {later y} (later≈ x≈y) = later (race-sym≈ x≈y)
≈→≲₀ : ∀ {x y a b} (x↓a : [ A ][ x ↓ a ]) (y↓b : [ A ][ y ↓ b ]) (a≡b : [ A ][ a ≡ b ]) → [ A ][ race x y ≲ y ]
≈→≲₀ (now↓ x≡a) y↓b a≡b = ↓≲ (≡↓ A (≡-sym A (≡-trans A x≡a a≡b)) y↓b)
≈→≲₀ (later↓ x↓a) (now↓ x≡y) a≡b = ↓≲ (now↓ (≡-refl A))
≈→≲₀ (later↓ x↓a) (later↓ y↓b) a≡b = later≲ (record { force≲ = ≈→≲₀ x↓a y↓b a≡b })
≈→≲ : {x y : Delay A } → [ A ][ x ≈ y ] → [ A ][ race x y ≲ y ]
≈′→≲′ : {x y : Delay A } → [ A ][ x ≈′ y ] → [ A ][ race x y ≲′ y ]
≈→≲ (↓≈ a≡b x↓a y↓b) = ≈→≲₀ x↓a y↓b a≡b
≈→≲ (later≈ x≈y) = later≲ (≈′→≲′ x≈y)
force≲ (≈′→≲′ x≈y) = ≈→≲ (force≈ x≈y)
delta₀ : {x : Delay A } {a : A } → (x↓a : [ A ][ x ↓ a ]) → {c}
delta₀ {x} (now↓ x≡y) = zero
delta₀ (later↓ x↓a) = suc (delta₀ x↓a)
delta : {x y : Delay A } → [ A ][ x ≲ y ] → Delay ( A × {c})
delta : {x y : Delay A } → [ A ][ x ≲′ y ] → Delay ( A × {c})
delta (↓≲ {x}{a} x↓a) = now (a , delta₀ x↓a)
delta (later≲ x≲y) = later (delta x≲y)
force (delta x≲y) = delta (force≲ x≲y)
ι : A × {c} → Delay A
ι : A × {c} → Delay A
force (ι p) = ι p
ι (x , zero) = now x
ι (x , suc n) = later (ι (x , n))
ιₛ' : (A ×ₛ (-setoid {c})) ⟶ Delay A
ιₛ' = record { to = ι ; cong = ι-cong }
where
ι-cong : ∀ {x y} → [ A ×ₛ (-setoid {c}) ][ x ≡ y ] → [ A ][ ι x ι y ]
ι-cong : ∀ {x y} → [ A ×ₛ (-setoid {c}) ][ x ≡ y ] → [ A ][ ι x ι y ]
force (ι-cong {x} {y} x≡y) = ι-cong x≡y
ι-cong {x , zero} {y , zero} (x≡y , n≡m) = now x≡y
ι-cong {x , suc n} {y , suc m} (x≡y , n≡m) = later (ι-cong (x≡y , suc-inj n≡m))
delta-prop₁ : {x y : Delay A } (x≲y : [ A ][ x ≲ y ]) → [ A ][ liftF proj₁ (delta x≲y) x ]
delta-prop₁ : {x y : Delay A } (x≲y : [ A ][ x ≲′ y ]) → [ A ][ liftF proj₁ (force (delta x≲y)) x ]
delta-prop₁ {.(now _)} {x} (↓≲ x↓a) = now (≡-refl A)
delta-prop₁ {.(later _)} {.(later _)} (later≲ x≲y) = later (delta-prop₁ x≲y)
force (delta-prop₁ x≲y) = delta-prop₁ (force≲ x≲y)
delta-prop₂ : {x y : Delay A } (x≲y : [ A ][ x ≲ y ]) → [ A ][ μ {A} (liftF ι (delta x≲y)) y ]
delta-prop₂ : {x y : Delay A } (x≲y : [ A ][ x ≲′ y ]) → [ A ][ μ {A} (liftF ι (force (delta x≲y))) y ]
delta-prop₂ (↓≲ x↓a) = -sym A (ι↓ x↓a)
where
ι↓ : {x : Delay A }{a : A } → (x↓a : [ A ][ x ↓ a ]) → [ A ][ x ι (a , delta₀ x↓a) ]
ι↓ {.(now _)} {a} (now↓ x≡y) = now x≡y
ι↓ {.(later _)} {a} (later↓ x↓a) = later (record { force = ι↓ x↓a })
delta-prop₂ (later≲ x≲y) = later (delta-prop₂ x≲y)
force (delta-prop₂ x≲y) = delta-prop₂ (force≲ x≲y)
```