agda-gset/Algebra/GSet.agda

29 lines
1 KiB
Agda
Raw Normal View History

2024-05-04 14:15:13 +02:00
open import Algebra.Bundles
open import Level
open import Data.Product
open import Relation.Binary.PropositionalEquality
2024-05-04 15:02:01 +02:00
module Algebra.GSet {c : Level} where
2024-05-04 14:15:13 +02:00
open Group using () renaming (Carrier to _)
record G-Set (G : Group c ) : Set (suc (c )) where
open Group G using (ε; _∙_)
field
X : Set c
_⊳_ : G X X
field
ε⊳ : {x : X} ε x x
∘⊳ : {g h : G } {x : X} (g h) x (g (h x))
open G-Set using () renaming (X to _)
isEquivariant : {G : Group c } (X Y : G-Set G) (f : X Y ) Set c
isEquivariant {G} X Y f = {g : G } {x : X } f (g ⊳ˣ x) g ⊳ʸ (f x)
where
open G-Set X using () renaming (_⊳_ to _⊳ˣ_)
open G-Set Y using () renaming (_⊳_ to _⊳ʸ_)
record G-Set-Morphism (G : Group c ) (X Y : G-Set G) : Set (suc (c )) where
field
2024-05-04 15:02:01 +02:00
u : X Y -- u for underlying
isEqui : isEquivariant X Y u