bsc-leon-vatthauer/ElgotAlgebras.agda

261 lines
19 KiB
Agda
Raw Normal View History

open import Level renaming (suc to -suc)
open import Function using (_$_) renaming (id to idf; _∘_ to _∘ᶠ_)
open import Data.Product using (_,_) renaming (_×_ to _∧_)
2023-07-28 20:50:27 +02:00
open import Categories.Category.Cocartesian
open import Categories.Category.Cocartesian.Bundle
open import Categories.Category.Cartesian
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Algebra
open import Categories.Object.Terminal
open import Categories.Object.Product
2023-07-28 20:50:27 +02:00
open import Categories.Object.Exponential
open import Categories.Object.Coproduct
open import Categories.Category.BinaryProducts
open import Categories.Category
open import ElgotAlgebra
open import Categories.Category.Distributive
open import Categories.Category.Extensive.Bundle
open import Categories.Category.Extensive
open import Categories.Morphism
module ElgotAlgebras where
private
variable
o e : Level
module _ (D : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
open Cocartesian (Extensive.cocartesian extensive)
open Cartesian (ExtensiveDistributiveCategory.cartesian D)
open BinaryProducts products
--*
-- let's define the category of elgot-algebras
--*
-- iteration preversing morphism between two elgot-algebras
module _ (E E₂ : Elgot-Algebra D) where
open Elgot-Algebra E₁ renaming (_# to _#₁)
open Elgot-Algebra E₂ renaming (_# to _#₂; A to B)
record Elgot-Algebra-Morphism : Set (o e) where
field
h : A B
preserves : {X} {f : X A + X} h (f #₁) ((h +₁ idC) f)#₂
-- the category of elgot algebras for a given category
Elgot-Algebras : Category (o e) (o e) e
Elgot-Algebras = record
{ Obj = Elgot-Algebra D
; _⇒_ = Elgot-Algebra-Morphism
; _≈_ = λ f g Elgot-Algebra-Morphism.h f Elgot-Algebra-Morphism.h g
; id = λ {EB} let open Elgot-Algebra EB in
record { h = idC; preserves = λ {X : Obj} {f : X A + X} begin
idC f # ≈⟨ identityˡ
(f #) ≈⟨ sym $ #-resp-≈ identityˡ
((idC f) #) ≈⟨ sym (#-resp-≈ (∘-resp-≈ˡ +-η))
(([ i₁ , i₂ ] f)#) ≈⟨ sym $ #-resp-≈ (∘-resp-≈ˡ ([]-cong₂ identityʳ identityʳ))
(([ i₁ idC , i₂ idC ] f)#) ≈⟨ sym $ #-resp-≈ (∘-resp-≈ˡ []∘+₁)
((([ i₁ , i₂ ] (idC +₁ idC)) f)#) ≈⟨ #-resp-≈ assoc
(([ i₁ , i₂ ] (idC +₁ idC) f)#) ≈⟨ #-resp-≈ (∘-resp-≈ˡ +-η)
((idC (idC +₁ idC) f)#) ≈⟨ #-resp-≈ identityˡ
((idC +₁ idC) f) # }
; _∘_ = λ {EA} {EB} {EC} f g let
open Elgot-Algebra-Morphism f renaming (h to hᶠ; preserves to preservesᶠ)
open Elgot-Algebra-Morphism g renaming (h to hᵍ; preserves to preservesᵍ)
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ)
open Elgot-Algebra EB using () renaming (_# to _#ᵇ; A to B)
open Elgot-Algebra EC using () renaming (_# to _#ᶜ; A to C; #-resp-≈ to #ᶜ-resp-≈)
in record { h = hᶠ hᵍ; preserves = λ {X} {f : X A + X} begin
(hᶠ hᵍ) (f #ᵃ) ≈⟨ assoc
(hᶠ hᵍ (f #ᵃ)) ≈⟨ ∘-resp-≈ʳ preservesᵍ
(hᶠ (((hᵍ +₁ idC) f) #ᵇ)) ≈⟨ preservesᶠ
(((hᶠ +₁ idC) (hᵍ +₁ idC) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ sym-assoc
((((hᶠ +₁ idC) (hᵍ +₁ idC)) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)
((((hᶠ hᵍ) +₁ (idC idC)) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ refl (identity²)))
((hᶠ hᵍ +₁ idC) f) #ᶜ }
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
; assoc = assoc
; sym-assoc = sym-assoc
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≈ = ∘-resp-≈
}
where
open Elgot-Algebra-Morphism
open HomReasoning
open Equiv
--*
-- products and exponentials of elgot-algebras
--*
-- if the carrier contains a terminal, so does elgot-algebras
Terminal-Elgot-Algebras : Terminal C Terminal Elgot-Algebras
Terminal-Elgot-Algebras T = record
{ = record
{ A =
; _# = λ x !
; #-Fixpoint = λ {_ f} !-unique ([ idC , ! ] f)
; #-Uniformity = λ {_ _ _ _ h} _ !-unique (! h)
; #-Folding = refl
; #-resp-≈ = λ _ refl
}
; -is-terminal = record
{ ! = λ {A} record { h = ! ; preserves = λ {X} {f} sym (!-unique (! (A Elgot-Algebra.#) f)) }
; !-unique = λ {A} f !-unique (Elgot-Algebra-Morphism.h f)
}
}
where
open Terminal T
open Equiv
-- if the carriers of the algebra form a product, so do the algebras
A×B-Helper : {EA EB : Elgot-Algebra D} Elgot-Algebra D
A×B-Helper {EA} {EB} = record
{ A = A × B
; _# = λ {X : Obj} (h : X A×B + X) ((π₁ +₁ idC) h)#ᵃ , ((π₂ +₁ idC) h)#ᵇ
; #-Fixpoint = λ {X} {f} begin
((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint
[ idC , ((π₁ +₁ idC) f)#ᵃ ] ((π₁ +₁ idC) f) , [ idC , ((π₂ +₁ idC) f)#ᵇ ] ((π₂ +₁ idC) f) ≈⟨ ⟨⟩-cong₂ sym-assoc sym-assoc
([ idC , ((π₁ +₁ idC) f)#ᵃ ] (π₁ +₁ idC)) f , ([ idC , ((π₂ +₁ idC) f)#ᵇ ] (π₂ +₁ idC)) f ≈⟨ ⟨⟩-cong₂ (∘-resp-≈ˡ []∘+₁) (∘-resp-≈ˡ []∘+₁)
[ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] f , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f ≈⟨ sym ⟨⟩∘
( [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f) ≈⟨ ∘-resp-≈ˡ (unique (begin
π₁ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ project₁
[ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] ≈⟨ []-cong₂ identityˡ identityʳ
[ π₁ , ((π₁ +₁ idC) f)#ᵃ ] ≈⟨ sym ([]-cong₂ identityʳ project₁)
[ π₁ idC , π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ∘[]
π₁ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ) (begin
π₂ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ project₂
[ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ []-cong₂ identityˡ identityʳ
[ π₂ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ([]-cong₂ identityʳ project₂)
[ π₂ idC , π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ∘[]
π₂ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] )
)
([ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] f)
; #-Uniformity = λ {X Y f g h} uni unique (begin
π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ project₁
(((π₁ +₁ idC) f)#ᵃ) ≈⟨ #ᵃ-Uniformity (begin
(idC +₁ h) (π₁ +₁ idC) f ≈⟨ sym-assoc
((idC +₁ h) (π₁ +₁ idC)) f ≈⟨ ∘-resp-≈ˡ +₁∘+₁
(idC π₁ +₁ h idC) f ≈⟨ ∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)
((π₁ +₁ h) f) ≈⟨ sym (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ))
(((π₁ idC +₁ idC h)) f) ≈⟨ sym (∘-resp-≈ˡ +₁∘+₁)
((π₁ +₁ idC) (idC +₁ h)) f ≈⟨ assoc
(π₁ +₁ idC) ((idC +₁ h) f) ≈⟨ ∘-resp-≈ʳ uni
(π₁ +₁ idC) g h ≈⟨ sym-assoc
((π₁ +₁ idC) g) h
)
(((π₁ +₁ idC) g)#ᵃ h) ≈⟨ sym (∘-resp-≈ˡ project₁)
((π₁ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ ) h) ≈⟨ assoc
π₁ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ h
) (begin
π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ project₂
((π₂ +₁ idC) f)#ᵇ ≈⟨ #ᵇ-Uniformity (begin
(idC +₁ h) (π₂ +₁ idC) f ≈⟨ sym-assoc
(((idC +₁ h) (π₂ +₁ idC)) f) ≈⟨ ∘-resp-≈ˡ +₁∘+₁
((idC π₂ +₁ h idC) f) ≈⟨ ∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)
((π₂ +₁ h) f) ≈⟨ sym (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ))
((((π₂ idC +₁ idC h)) f)) ≈⟨ sym (∘-resp-≈ˡ +₁∘+₁)
((π₂ +₁ idC) ((idC +₁ h))) f ≈⟨ assoc
(π₂ +₁ idC) ((idC +₁ h)) f ≈⟨ ∘-resp-≈ʳ uni
(π₂ +₁ idC) g h ≈⟨ sym-assoc
((π₂ +₁ idC) g) h
)
((π₂ +₁ idC) g)#ᵇ h ≈⟨ sym (∘-resp-≈ˡ project₂)
((π₂ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ ) h) ≈⟨ assoc
π₂ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ h
)
; #-Folding = λ {X} {Y} {f} {h} ⟨⟩-cong₂ (foldingˡ {X} {Y}) (foldingʳ {X} {Y})
; #-resp-≈ = λ fg ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ʳ fg)) (#ᵇ-resp-≈ (∘-resp-≈ʳ fg))
}
where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
open HomReasoning
open Equiv
foldingˡ : {X} {Y} {f} {h} (((π₁ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵃ) ((π₁ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵃ
foldingˡ {X} {Y} {f} {h} = begin
((π₁ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵃ ≈⟨ #ᵃ-resp-≈ +₁∘+₁
((π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ idC h)#ᵃ) ≈⟨ #ᵃ-resp-≈ (+₁-cong₂ project₁ identityˡ)
((((π₁ +₁ idC) f)#ᵃ +₁ h)#ᵃ) ≈⟨ #ᵃ-Folding
([ (idC +₁ i₁) ((π₁ +₁ idC) f) , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-congʳ sym-assoc)
([ ((idC +₁ i₁) (π₁ +₁ idC)) f , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-congʳ (∘-resp-≈ˡ +₁∘+₁))
([ ((idC π₁ +₁ i₁ idC)) f , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-congʳ (∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)))
([ ((π₁ +₁ i₁)) f , i₂ h ] #ᵃ) ≈⟨ sym (#ᵃ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ)) (∘-resp-≈ˡ identityʳ)))
(([ (π₁ idC +₁ idC i₁) f , (i₂ idC) h ])#ᵃ) ≈⟨ sym (#ᵃ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ +₁∘i₂)))
(([ ((π₁ +₁ idC) (idC +₁ i₁)) f , ((π₁ +₁ idC) i₂) h ])#ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-cong₂ assoc assoc)
(([ (π₁ +₁ idC) (idC +₁ i₁) f , (π₁ +₁ idC) i₂ h ])#ᵃ) ≈⟨ sym (#ᵃ-resp-≈ ∘[])
((π₁ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵃ
foldingʳ : {X} {Y} {f} {h} ((π₂ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵇ ((π₂ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵇ
foldingʳ {X} {Y} {f} {h} = begin
((π₂ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵇ ≈⟨ #ᵇ-resp-≈ +₁∘+₁
((π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ idC h)#ᵇ) ≈⟨ #ᵇ-resp-≈ (+₁-cong₂ project₂ identityˡ)
((((π₂ +₁ idC) f)#ᵇ +₁ h)#ᵇ) ≈⟨ #ᵇ-Folding
[ (idC +₁ i₁) ((π₂ +₁ idC) f) , i₂ h ] #ᵇ ≈⟨ #ᵇ-resp-≈ ([]-congʳ sym-assoc)
([ ((idC +₁ i₁) (π₂ +₁ idC)) f , i₂ h ] #ᵇ) ≈⟨ #ᵇ-resp-≈ ([]-congʳ (∘-resp-≈ˡ +₁∘+₁))
([ ((idC π₂ +₁ i₁ idC)) f , i₂ h ] #ᵇ) ≈⟨ #ᵇ-resp-≈ ([]-congʳ (∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)))
([ ((π₂ +₁ i₁)) f , i₂ h ] #ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ)) (∘-resp-≈ˡ identityʳ)))
(([ (π₂ idC +₁ idC i₁) f , (i₂ idC) h ])#ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ +₁∘i₂)))
(([ ((π₂ +₁ idC) (idC +₁ i₁)) f , ((π₂ +₁ idC) i₂) h ])#ᵇ) ≈⟨ #ᵇ-resp-≈ ([]-cong₂ assoc assoc)
(([ (π₂ +₁ idC) (idC +₁ i₁) f , (π₂ +₁ idC) i₂ h ])#ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ∘[])
((π₂ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵇ
Product-Elgot-Algebras : (EA EB : Elgot-Algebra D) Product Elgot-Algebras EA EB
Product-Elgot-Algebras EA EB = record
{ A×B = A×B-Helper {EA} {EB}
; π₁ = record { h = π₁ ; preserves = λ {X} {f} project₁ }
; π₂ = record { h = π₂ ; preserves = λ {X} {f} project₂ }
; ⟨_,_⟩ = λ {E} f g let
open Elgot-Algebra-Morphism f renaming (h to f; preserves to preservesᶠ)
open Elgot-Algebra-Morphism g renaming (h to g; preserves to preservesᵍ)
open Elgot-Algebra E renaming (_# to _#ᵉ) in record { h = f , g ; preserves = λ {X} {h}
begin
f , g (h #ᵉ) ≈⟨ ⟨⟩∘
f (h #ᵉ) , g (h #ᵉ) ≈⟨ ⟨⟩-cong₂ preservesᶠ preservesᵍ
((f +₁ idC) h) #ᵃ , ((g +₁ idC) h) #ᵇ ≈⟨ sym (⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₁ identity²))) (#ᵇ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₂ identity²))))
((π₁ f , g +₁ idC idC) h) #ᵃ , ((π₂ f , g +₁ idC idC) h) #ᵇ ≈⟨ sym (⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)) (#ᵇ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)))
(((π₁ +₁ idC) ( f , g +₁ idC)) h) #ᵃ , (((π₂ +₁ idC) ( f , g +₁ idC)) h) #ᵇ ≈⟨ (⟨⟩-cong₂ (#ᵃ-resp-≈ assoc) (#ᵇ-resp-≈ assoc))
((π₁ +₁ idC) ( f , g +₁ idC) h) #ᵃ , ((π₂ +₁ idC) ( f , g +₁ idC) h) #ᵇ }
; project₁ = project₁
; project₂ = project₂
; unique = unique
}
where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
open Elgot-Algebra (A×B-Helper {EA} {EB}) using () renaming (_# to _#ᵖ)
open HomReasoning
open Equiv
2023-07-28 20:50:27 +02:00
-- if the carrier is cartesian, so is the category of algebras
Cartesian-Elgot-Algebras : Cartesian Elgot-Algebras
Cartesian-Elgot-Algebras = record
{ terminal = Terminal-Elgot-Algebras terminal
; products = record { product = λ {EA EB} Product-Elgot-Algebras EA EB }
}
where
open Equiv
-- if the carriers of the algebra form a exponential, so do the algebras
B^A-Helper : {EA : Elgot-Algebra D} {X : Obj} Exponential C X (Elgot-Algebra.A EA) Elgot-Algebra D
B^A-Helper {EA} {X} exp = record
{ A = A^X
; _# = λ {Z} f λg product (((((eval +₁ idC) (Categories.Object.Product.repack C product product' +₁ idC)) dstl) (f idC)) #ᵃ)
; #-Fixpoint = λ {X} {f} {! !}
; #-Uniformity = {! !}
; #-Folding = {! !}
; #-resp-≈ = {! !}
}
where
open Exponential exp renaming (B^A to A^X; product to product')
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
dstr = λ {X Y Z} IsIso.inv (isIsoˡ {X} {Y} {Z})
dstl = λ {X Y Z} IsIso.inv (isIsoʳ {X} {Y} {Z})