The (functor) category of pre-Elgot monads.

module Category.Construction.PreElgotMonads {o  e} (ambient : Ambient o  e) where
open Ambient ambient
open import Monad.PreElgot ambient
open import Algebra.Elgot cocartesian
open HomReasoning
open Equiv
open M C
open MR C

module _ (P S : PreElgotMonad) where
  private
    open PreElgotMonad P using () renaming (T to TP; elgotalgebras to P-elgots)
    open PreElgotMonad S using () renaming (T to TS; elgotalgebras to S-elgots)
    module TP = Monad TP
    module TS = Monad TS
    open RMonad (Monad⇒Kleisli C TP) using () renaming (extend to extendP)
    open RMonad (Monad⇒Kleisli C TS) using () renaming (extend to extendS)
    _#P = λ {X} {A} f  P-elgots._# {X} {A} f
    _#S = λ {X} {A} f  S-elgots._# {X} {A} f
  record PreElgotMonad-Morphism : Set (o    e) where
    field
      α : NaturalTransformation TP.F TS.F
    module α = NaturalTransformation α
    field
      α-η :  {X}
         α.η X  TP.η.η X  TS.η.η X
      α-μ :  {X}
         α.η X  TP.μ.η X  TS.μ.η X  TS.F.₁ (α.η X)  α.η (TP.F.₀ X)
      preserves :  {X A} (f : X  TP.F.₀ A + X)  α.η A  f #P  ((α.η A +₁ idC)  f) #S

PreElgotMonads : Category (o    e) (o    e) (o  e)
PreElgotMonads = record
  { Obj = PreElgotMonad
  ; _⇒_ = PreElgotMonad-Morphism
  ; _≈_ = λ f g  (PreElgotMonad-Morphism.α f)  (PreElgotMonad-Morphism.α g)
  ; id = id'
  ; _∘_ = _∘'_
  ; assoc = assoc
  ; sym-assoc = sym-assoc
  ; identityˡ = identityˡ
  ; identityʳ = identityʳ
  ; identity² = identity²
  ; equiv = record { refl = refl ; sym = λ f  sym f ; trans = λ f g  trans f g }
  ; ∘-resp-≈ = λ f≈h g≈i  ∘-resp-≈ f≈h g≈i
  }
  where
    open Elgot-Algebra-on using (#-resp-≈)
    id' :  {A : PreElgotMonad}  PreElgotMonad-Morphism A A
    id' {A} = record
      { α = ntHelper (record
        { η = λ _  idC
        ; commute = λ _  id-comm-sym
        })
      ; α-η = identityˡ
      ; α-μ = sym (begin
        T.μ.η _  T.F.₁ idC  idC ≈⟨ refl⟩∘⟨ identityʳ 
        T.μ.η _  T.F.₁ idC       ≈⟨ elimʳ T.F.identity 
        T.μ.η _                   ≈⟨ sym identityˡ 
        idC  T.μ.η _             )
      ; preserves = λ f  begin
        idC  f #            ≈⟨ identityˡ 
        f #                  ≈⟨ sym (#-resp-≈ elgotalgebras (elimˡ ([]-unique id-comm-sym id-comm-sym))) 
        ((idC +₁ idC)  f) # 
      }
      where
        open PreElgotMonad A using (T; elgotalgebras)
        module T = Monad T
        _# = λ {X} {A} f  elgotalgebras._# {X} {A} f
    _∘'_ :  {X Y Z : PreElgotMonad}  PreElgotMonad-Morphism Y Z  PreElgotMonad-Morphism X Y  PreElgotMonad-Morphism X Z
    _∘'_ {X} {Y} {Z} f g = record
      { α = αf ∘ᵥ αg
      ; α-η = λ {A}  begin
        (αf.η A  αg.η A)  TX.η.η A ≈⟨ pullʳ (α-η g) 
        αf.η A  TY.η.η A            ≈⟨ α-η f 
        TZ.η.η A                     
      ; α-μ = λ {A}  begin
        (αf.η A  αg.η A)  TX.μ.η A                                                       ≈⟨ pullʳ (α-μ g) 
        αf.η A  TY.μ.η A  TY.F.₁ (αg.η A)  αg.η (TX.F.₀ A)                              ≈⟨ pullˡ (α-μ f) 
        (TZ.μ.η A  TZ.F.₁ (αf.η A)  αf.η (TY.F.₀ A))  TY.F.₁ (αg.η A)  αg.η (TX.F.₀ A) ≈⟨ assoc  refl⟩∘⟨ pullʳ (pullˡ (NaturalTransformation.commute αf (αg.η A))) 
        TZ.μ.η A  TZ.F.₁ (αf.η A)  (TZ.F.₁ (αg.η A)  αf.η (TX.F.₀ A))  αg.η (TX.F.₀ A) ≈⟨ refl⟩∘⟨ pullˡ (pullˡ (sym (Functor.homomorphism TZ.F))) 
        TZ.μ.η A  (TZ.F.₁ (αf.η A  αg.η A)  αf.η (TX.F.₀ A))  αg.η (TX.F.₀ A)          ≈⟨ refl⟩∘⟨ assoc 
        TZ.μ.η A  TZ.F.₁ ((αf.η A  αg.η A))   αf.η (TX.F.₀ A)  αg.η (TX.F.₀ A)         
      ; preserves = λ {A} {B} h  begin
        (αf.η B  αg.η B)  (h #X)                   ≈⟨ pullʳ (preserves g h) 
        αf.η B  ((αg.η B +₁ idC)  h) #Y            ≈⟨ preserves f ((αg.η B +₁ idC)  h) 
        (((αf.η B +₁ idC)  (αg.η B +₁ idC)  h) #Z) ≈⟨ #-resp-≈ (PreElgotMonad.elgotalgebras Z) (pullˡ (+₁∘+₁  +₁-cong₂ refl identity²)) 
        (((αf.η B  αg.η B +₁ idC)  h) #Z)          
      }
      where
        module TX = Monad (PreElgotMonad.T X)
        module TY = Monad (PreElgotMonad.T Y)
        module TZ = Monad (PreElgotMonad.T Z)
        _#X = λ {A} {B} f  PreElgotMonad.elgotalgebras._# X {A} {B} f
        _#Y = λ {A} {B} f  PreElgotMonad.elgotalgebras._# Y {A} {B} f
        _#Z = λ {A} {B} f  PreElgotMonad.elgotalgebras._# Z {A} {B} f

        open PreElgotMonad-Morphism using (α-η; α-μ; preserves)

        open PreElgotMonad-Morphism f using () renaming (α to αf)
        open PreElgotMonad-Morphism g using () renaming (α to αg)