{-# OPTIONS --without-K --safe #-}

module Categories.NaturalTransformation.NaturalIsomorphism.Properties where

open import Level

open import Categories.Category
open import Categories.Category.Instance.Setoids
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Construction.LiftSetoids
open import Categories.NaturalTransformation.NaturalIsomorphism
open import Categories.NaturalTransformation.Properties

import Categories.Morphism as Mor
import Categories.Morphism.Properties as Morₚ
import Categories.Morphism.Reasoning as MR

private
  variable
    o  e : Level
    C D : Category o  e


module _ {F G : Functor C D} where
  private
    module C = Category C
    module F = Functor F
    module G = Functor G

  open Category D
  open Mor D
  open _≅_

  -- We can construct a natural isomorphism from a pointwise isomorphism, provided that we can show naturality in one direction.
  pointwise-iso : (iso :  X  F.F₀ X  G.F₀ X)  (∀ {X Y}  (f : C [ X , Y ])  from (iso Y)  F.F₁ f  G.F₁ f  from (iso X))  NaturalIsomorphism F G
  pointwise-iso iso commute = niHelper record
    { η = λ X  from (iso X)
    ; η⁻¹ = λ X  to (iso X)
    ; commute = commute
    ; iso = λ X  record
      { isoˡ = isoˡ (iso X)
      ; isoʳ = isoʳ (iso X)
      }
    }

module _ {F G : Functor C D} (α : NaturalIsomorphism F G) where
  private module C = Category C
  open Category D
  open Mor D
  open Functor F
  open Functor G renaming (F₀ to G₀; F₁ to G₁)
  open NaturalIsomorphism α

  -- We can move equations along natural isomorphism.

  module _ {A B} {f g : A C.⇒ B} where

    push-eq : F₁ f  F₁ g  G₁ f  G₁ g
    push-eq hyp = MR.push-eq D FX≅GX (⇒.commute f) (⇒.commute g) hyp

    pull-eq : G₁ f  G₁ g  F₁ f  F₁ g
    pull-eq hyp = MR.push-eq D (≅.sym FX≅GX) (⇐.commute f) (⇐.commute g) hyp

-- properties of natural isomorphisms over an endofunctor
module _ {F : Endofunctor C} where
  private
    module C = Category C
    module F = Functor F
    module MC = Mor C

  module _ (α : F  idF) where
    open C
    open HomReasoning
    open F
    open MC
    open MR C
    open Mor C
    open Morₚ C
    open NaturalIsomorphism α

    F≃id-comm₁ :  {A}  ⇒.η (F₀ A)  F₁ (⇒.η A)
    F≃id-comm₁ {A} = begin
      ⇒.η (F₀ A)                           ≈⟨ introʳ (F-resp-≈ (iso.isoˡ _)  identity) 
      ⇒.η (F₀ A)  F₁ (⇐.η A  ⇒.η A)      ≈⟨ refl⟩∘⟨ homomorphism 
      ⇒.η (F₀ A)  F₁ (⇐.η A)  F₁ (⇒.η A) ≈⟨ cancelˡ (⇒.commute _  iso.isoˡ _) 
      F₁ (⇒.η A)                           

    F≃id-comm₂ :  {A}  ⇐.η (F₀ A)  F₁ (⇐.η A)
    F≃id-comm₂ {A} = begin
      ⇐.η (F₀ A)                             ≈⟨ introˡ (F-resp-≈ (iso.isoˡ _)  identity) 
      F₁ (⇐.η A  ⇒.η A)  ⇐.η (F₀ A)        ≈⟨ homomorphism ⟩∘⟨refl 
      (F₁ (⇐.η A)  F₁ (⇒.η A))  ⇐.η (F₀ A) ≈⟨ cancelʳ ( (⇐.commute _)  iso.isoˡ _) 
      F₁ (⇐.η A)                             

    F≃id⇒id :  {A} {f : A  A}  F₁ f  id  f  id
    F≃id⇒id {A} {f} eq = Iso⇒Mono (Iso-swap (iso A)) _ _ helper
      where helper : ⇐.η A  f  ⇐.η A  id
            helper = begin
              ⇐.η A  f    ≈⟨ ⇐.commute f 
              F₁ f  ⇐.η A ≈⟨ eq ⟩∘⟨refl 
              id  ⇐.η A   ≈˘⟨ id-comm 
              ⇐.η A  id   

-- unlift universe level
module _ {c  ℓ′ e} {F G : Functor C (Setoids c )} (α : LiftSetoids ℓ′ e ∘F F  LiftSetoids ℓ′ e ∘F G) where
  open NaturalIsomorphism α

  unlift-≃ : F  G
  unlift-≃ = record
    { F⇒G = unlift-nat F⇒G
    ; F⇐G = unlift-nat F⇐G
    ; iso = λ X  record
      { isoˡ = λ eq  lower (iso.isoˡ X (lift eq))
      ; isoʳ = λ eq  lower (iso.isoʳ X (lift eq))
      }
    }