{-# OPTIONS --without-K --safe #-}
module Categories.Yoneda where
open import Level
open import Function.Base using (_$_)
open import Function.Bundles using (Inverse)
open import Function.Equality using (Π; _⟨$⟩_; cong)
open import Relation.Binary.Bundles using (module Setoid)
import Relation.Binary.Reasoning.Setoid as SetoidR
open import Data.Product using (_,_; Σ)
open import Categories.Category using (Category; _[_,_])
open import Categories.Category.Product using (πʳ; πˡ; _※_)
open import Categories.Category.Construction.Presheaves using (Presheaves)
open import Categories.Category.Construction.Functors using (eval)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Functor.Hom using (module Hom; Hom[_][-,_]; Hom[_][-,-])
open import Categories.Functor.Bifunctor using (Bifunctor)
open import Categories.Functor.Presheaf using (Presheaf)
open import Categories.Functor.Construction.LiftSetoids using (LiftSetoids)
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) renaming (id to idN)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism)
import Categories.Morphism as Mor
import Categories.Morphism.Reasoning as MR
import Categories.NaturalTransformation.Hom as NT-Hom
private
variable
o ℓ e : Level
module Yoneda (C : Category o ℓ e) where
open Category C hiding (op)
open HomReasoning using (_○_; ⟺)
open MR C using (id-comm)
open NaturalTransformation using (η; commute)
open NT-Hom C using (Hom[A,C]⇒Hom[B,C])
private
module CE = Category.Equiv C using (refl)
module C = Category C using (op)
embed : Functor C (Presheaves C)
embed = record
{ F₀ = Hom[ C ][-,_]
; F₁ = Hom[A,C]⇒Hom[B,C]
; identity = identityˡ ○_
; homomorphism = λ h₁≈h₂ → ∘-resp-≈ʳ h₁≈h₂ ○ assoc
; F-resp-≈ = λ f≈g h≈i → ∘-resp-≈ f≈g h≈i
}
yoneda-inverse : (a : Obj) (F : Presheaf C (Setoids ℓ e)) →
Inverse (Category.hom-setoid (Presheaves C) {Functor.F₀ embed a} {F}) (Functor.F₀ F a)
yoneda-inverse a F = record
{ f = λ nat → η nat a ⟨$⟩ id
; f⁻¹ = λ x → ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = λ X⇒a → F.₁ X⇒a ⟨$⟩ x
; cong = λ i≈j → F.F-resp-≈ i≈j SE.refl
}
; commute = λ {X} {Y} Y⇒X {f} {g} f≈g →
let module SR = SetoidR (F.₀ Y) in
SR.begin
F.₁ (id ∘ f ∘ Y⇒X) ⟨$⟩ x SR.≈⟨ F.F-resp-≈ (identityˡ ○ ∘-resp-≈ˡ f≈g) (SE.refl {x}) ⟩
F.₁ (g ∘ Y⇒X) ⟨$⟩ x SR.≈⟨ F.homomorphism SE.refl ⟩
F.₁ Y⇒X ⟨$⟩ (F.₁ g ⟨$⟩ x)
SR.∎
}
; cong₁ = λ i≈j → i≈j CE.refl
; cong₂ = λ i≈j y≈z → F.F-resp-≈ y≈z i≈j
; inverse = (λ Fa → F.identity SE.refl) , λ nat {x} {z} z≈y →
let module S = Setoid (F.₀ x) in
S.trans (S.sym (commute nat z CE.refl))
(cong (η nat x) (identityˡ ○ identityˡ ○ z≈y))
}
where
module F = Functor F using (₀; ₁; F-resp-≈; homomorphism; identity)
module SE = Setoid (F.₀ a) using (refl)
private
Nat[Hom[C][-,c],F] : Bifunctor (Presheaves C) (Category.op C) (Setoids _ _)
Nat[Hom[C][-,c],F] = Hom[ Presheaves C ][-,-] ∘F (Functor.op embed ∘F πʳ ※ πˡ)
FC : Bifunctor (Presheaves C) (Category.op C) (Setoids _ _)
FC = LiftSetoids (o ⊔ ℓ ⊔ e) (o ⊔ ℓ) ∘F eval {C = Category.op C} {D = Setoids ℓ e}
module yoneda-inverse {a} {F} = Inverse (yoneda-inverse a F)
yoneda : NaturalIsomorphism Nat[Hom[C][-,c],F] FC
yoneda = record
{ F⇒G = ntHelper record
{ η = λ where
(F , A) → record
{ _⟨$⟩_ = λ α → lift (yoneda-inverse.f α)
; cong = λ i≈j → lift (i≈j CE.refl)
}
; commute = λ where
{_} {G , B} (α , f) {β} {γ} β≈γ → lift $ cong (η α B) (helper f β γ β≈γ)
}
; F⇐G = ntHelper record
{ η = λ (F , A) → record
{ _⟨$⟩_ = λ x → yoneda-inverse.f⁻¹ (lower x)
; cong = λ i≈j y≈z → Functor.F-resp-≈ F y≈z (lower i≈j)
}
; commute = λ (α , f) eq eq′ → helper′ α f (lower eq) eq′
}
; iso = λ (F , A) → record
{ isoˡ = λ {α β} i≈j {X} y≈z →
Setoid.trans (Functor.F₀ F X) ( yoneda-inverse.inverseʳ α {x = X} y≈z) (i≈j CE.refl)
; isoʳ = λ eq → lift (Setoid.trans (Functor.F₀ F A) ( yoneda-inverse.inverseˡ {F = F} _) (lower eq))
}
}
where helper : {F : Functor C.op (Setoids ℓ e)}
{A B : Obj} (f : B ⇒ A)
(β γ : NaturalTransformation Hom[ C ][-, A ] F) →
Setoid._≈_ (Functor.F₀ Nat[Hom[C][-,c],F] (F , A)) β γ →
Setoid._≈_ (Functor.F₀ F B) (η β B ⟨$⟩ f ∘ id) (Functor.F₁ F f ⟨$⟩ (η γ A ⟨$⟩ id))
helper {F} {A} {B} f β γ β≈γ = S.begin
η β B ⟨$⟩ f ∘ id S.≈⟨ cong (η β B) (id-comm ○ (⟺ identityˡ)) ⟩
η β B ⟨$⟩ id ∘ id ∘ f S.≈⟨ commute β f CE.refl ⟩
F.₁ f ⟨$⟩ (η β A ⟨$⟩ id) S.≈⟨ cong (F.₁ f) (β≈γ CE.refl) ⟩
F.₁ f ⟨$⟩ (η γ A ⟨$⟩ id) S.∎
where
module F = Functor F using (₀;₁)
module S = SetoidR (F.₀ B)
helper′ : ∀ {F G : Functor (Category.op C) (Setoids ℓ e)}
{A B Z : Obj}
{h i : Z ⇒ B}
{X Y : Setoid.Carrier (Functor.F₀ F A)}
(α : NaturalTransformation F G)
(f : B ⇒ A) →
Setoid._≈_ (Functor.F₀ F A) X Y →
h ≈ i →
Setoid._≈_ (Functor.F₀ G Z) (Functor.F₁ G h ⟨$⟩ (η α B ⟨$⟩ (Functor.F₁ F f ⟨$⟩ X)))
(η α Z ⟨$⟩ (Functor.F₁ F (f ∘ i) ⟨$⟩ Y))
helper′ {F} {G} {A} {B} {Z} {h} {i} {X} {Y} α f eq eq′ = S.begin
G.₁ h ⟨$⟩ (η α B ⟨$⟩ (F.₁ f ⟨$⟩ X)) S.≈˘⟨ commute α h (S′.sym (cong (F.₁ f) eq)) ⟩
η α Z ⟨$⟩ (F.₁ h ⟨$⟩ (F.₁ f ⟨$⟩ Y)) S.≈⟨ cong (η α Z) (F.F-resp-≈ eq′ S′.refl) ⟩
η α Z ⟨$⟩ (F.₁ i ⟨$⟩ (F.₁ f ⟨$⟩ Y)) S.≈˘⟨ cong (η α Z) (F.homomorphism (Setoid.refl (F.₀ A))) ⟩
η α Z ⟨$⟩ (F.₁ (f ∘ i) ⟨$⟩ Y) S.∎
where
module F = Functor F using (₀; ₁; homomorphism; F-resp-≈)
module G = Functor G using (₀; ₁)
module S = SetoidR (G.₀ Z)
module S′ = Setoid (F.₀ B) using (refl; sym)
module yoneda = NaturalIsomorphism yoneda