module Monad.Instance.Delay {o ℓ e} (ambient : Ambient o ℓ e) where open Ambient ambient
The delay monad is usually defined as a coinductive type with two
constructors now : X → D X
and
later : D X → D X
, e.g. in the agda-stdlib
We will now define it categorically by existence of final coalgebras
for the functor (X + -)
where X
is some
object. This functor trivially sends objects Y
to
X + Y
and functions f
to
id + f
.
In this definition D X
is the underlying object of the
final coalgebra given by X
. We then use Lambek’s Lemma to
gain an isomorphism D X ≅ X + D X
, whose inverse can be
factored into the constructors now
and
later
.
record DelayM : Set (o ⊔ ℓ ⊔ e) where field coalgebras : ∀ (A : Obj) → Terminal (F-Coalgebras (A +-)) module _ {X : Obj} where open Terminal (coalgebras X) using (⊤; !; !-unique) open F-Coalgebra ⊤ using () renaming (A to DX) public out-≅ : DX ≅ X + DX out-≅ = colambek {F = X +- } (coalgebras X) -- note: out-≅.from ≡ ⊤.α open _≅_ out-≅ using () renaming (to to out⁻¹; from to out) public now : X ⇒ DX now = out⁻¹ ∘ i₁ later : DX ⇒ DX later = out⁻¹ ∘ i₂ -- convenient notation ▷ = later unitlaw : out ∘ now ≈ i₁ unitlaw = cancelˡ (_≅_.isoʳ out-≅) laterlaw : out ∘ later ≈ i₂ laterlaw = cancelˡ (_≅_.isoʳ out-≅)
Since Y ⇒ X + Y
is an algebra for the
(X + -)
functor, we can use the final coalgebras to get a
coiteration operator coit
:
module _ {Y : Obj} where coit : Y ⇒ X + Y → Y ⇒ DX coit f = u (! {A = record { A = Y ; α = f }}) coit-commutes : ∀ (f : Y ⇒ X + Y) → out ∘ (coit f) ≈ (idC +₁ coit f) ∘ f coit-commutes f = commutes (! {A = record { A = Y ; α = f }}) coit-resp-≈ : ∀ {f g : Y ⇒ X + Y} → f ≈ g → coit f ≈ coit g coit-resp-≈ {f} {g} eq = Terminal.!-unique (coalgebras X) (record { f = coit g ; commutes = begin out ∘ coit g ≈⟨ coit-commutes g ⟩ (idC +₁ coit g) ∘ g ≈⟨ (refl⟩∘⟨ sym eq) ⟩ (idC +₁ coit g) ∘ f ∎ })
Furthermore if we combine the internal algebra structure of
Parametrized NNOs with Lambek’s lemma, we get the isomorphism
X × N ≅ X + X × N
. At the same time the morphism
X × N ⇒ X + X × N
is a coalgebra for the
(Y + \_)
-functor defined above, this gives us another
morphism ι : X × N ⇒ DX
by using the final coalgebras.
nno-iso : X × N ≅ X + X × N nno-iso = Lambek.lambek (record { ⊥ = PNNO-Algebra cartesianCategory coproducts X N z s ; ⊥-is-initial = PNNO⇒Initial₂ cartesianCategory coproducts ℕ X }) ι-coalg : F-Coalgebra-Morphism (record { A = X × N ; α = _≅_.from nno-iso }) (record { A = DX ; α = out }) ι-coalg = ! {A = record { A = X × N ; α = _≅_.from nno-iso }} ι : X × N ⇒ DX ι = u ι-coalg ι-commutes : out ∘ ι ≈ (idC +₁ ι) ∘ _≅_.from nno-iso ι-commutes = commutes ι-coalg
The next step is showing that this actually yields a monad. Some
parts for this are already given, we can construct D X
from
X
and now : D X ⇒ D X
is the monad unit.
What’s missing is Kleisli-lifting, given a morphism
f : X ⇒ D Y
we need to construct a morphism
extend f : D X ⇒ D Y
. To do so we go from D X
to D X + D Y
via injection and then construct a coalgebra
D X + D Y ⇒ Y + (D X + D Y)
, the final coalgebra
D Y ⇒ Y + D Y
then yields a coalgebra-morphism from
D X + D Y
to D Y
, see the following
diagram:
Proving the monad laws then requires two key lemmas, first of all
that the following diagram commutes for any f
(this is
extendlaw
)
and second that extend f
is the unique morphism
satisfying the commutative diagram i.e. any other morphism for which the
diagram commutes must be equivalent to extend f
(this is
extend-unique
).
-- Make DX more accessible outside D₀ : Obj → Obj D₀ X = DX {X} module _ {X Y : Obj} (f : X ⇒ D₀ Y) where open Terminal alg : F-Coalgebra (Y +-) alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out ∘ f) , i₂ ∘ i₁ ] ∘ out , (idC +₁ i₂) ∘ out ] } extend' : D₀ X ⇒ D₀ Y extend' = u (! (coalgebras Y) {A = alg}) ∘ i₁ {B = D₀ Y} !∘i₂ : u (! (coalgebras Y) {A = alg}) ∘ i₂ ≈ idC !∘i₂ = ⊤-id (coalgebras Y) (F-Coalgebras (Y +-) [ ! (coalgebras Y) ∘ record { f = i₂ ; commutes = inject₂ } ] ) extendlaw : out ∘ extend' ≈ [ out ∘ f , i₂ ∘ extend' ] ∘ out extendlaw = begin out ∘ extend' ≈⟨ pullˡ (commutes (! (coalgebras Y) {A = alg})) ⟩ ((idC +₁ (u (! (coalgebras Y)))) ∘ α alg) ∘ i₁ ≈⟨ pullʳ inject₁ ⟩ (idC +₁ (u (! (coalgebras Y)))) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out ∘ f) , i₂ ∘ i₁ ] ∘ out ≈⟨ pullˡ ∘[] ⟩ [ (idC +₁ (u (! (coalgebras Y)))) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out ∘ f) , (idC +₁ (u (! (coalgebras Y)))) ∘ i₂ ∘ i₁ ] ∘ out ≈⟨ ([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩ [ [ (idC +₁ (u (! (coalgebras Y)))) ∘ i₁ , (idC +₁ (u (! (coalgebras Y)))) ∘ i₂ ∘ i₂ ] ∘ (out ∘ f) , (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₁ ] ∘ out ≈⟨ ([]-cong₂ (([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl ⟩ [ [ i₁ ∘ idC , (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₂ ] ∘ (out ∘ f) , (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₁ ] ∘ out ≈⟨ ([]-cong₂ (elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂)) ○ +-η)) assoc) ⟩∘⟨refl ⟩ [ out ∘ f , i₂ ∘ extend' ] ∘ out ∎ extend'-unique : (g : D₀ X ⇒ D₀ Y) → (out ∘ g ≈ [ out ∘ f , i₂ ∘ g ] ∘ out) → extend' ≈ g extend'-unique g g-commutes = begin extend' ≈⟨ (!-unique (coalgebras Y) (record { f = [ g , idC ] ; commutes = begin out ∘ [ g , idC ] ≈⟨ ∘[] ⟩ [ out ∘ g , out ∘ idC ] ≈⟨ []-cong₂ g-commutes identityʳ ⟩ [ [ out ∘ f , i₂ ∘ g ] ∘ out , out ] ≈˘⟨ []-cong₂ (([]-cong₂ (([]-cong₂ refl identityʳ) ⟩∘⟨refl ○ (elimˡ +-η)) refl) ⟩∘⟨refl) refl ⟩ [ [ [ i₁ , i₂ ∘ idC ] ∘ (out ∘ f) , i₂ ∘ g ] ∘ out , out ] ≈˘⟨ []-cong₂ (([]-cong₂ (([]-cong₂ identityʳ (pullʳ inject₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl) refl ⟩ [ [ [ i₁ ∘ idC , (i₂ ∘ [ g , idC ]) ∘ i₂ ] ∘ (out ∘ f) , i₂ ∘ g ] ∘ out , out ] ≈˘⟨ []-cong₂ (([]-cong₂ (([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl) (pullʳ inject₁)) ⟩∘⟨refl) (elimˡ (Functor.identity (Y +-))) ⟩ [ [ [ (idC +₁ [ g , idC ]) ∘ i₁ , (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₂ ] ∘ (out ∘ f) , (i₂ ∘ [ g , idC ]) ∘ i₁ ] ∘ out , (idC +₁ idC) ∘ out ] ≈˘⟨ []-cong₂ (([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl) ((+₁-cong₂ identity² inject₂) ⟩∘⟨refl) ⟩ [ [ (idC +₁ [ g , idC ]) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out ∘ f) , (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₁ ] ∘ out , (idC ∘ idC +₁ [ g , idC ] ∘ i₂) ∘ out ] ≈˘⟨ []-cong₂ (pullˡ ∘[]) (pullˡ +₁∘+₁) ⟩ [ (idC +₁ [ g , idC ]) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out ∘ f) , i₂ ∘ i₁ ] ∘ out , (idC +₁ [ g , idC ]) ∘ (idC +₁ i₂) ∘ out ] ≈˘⟨ ∘[] ⟩ (idC +₁ [ g , idC ]) ∘ α alg ∎ })) ⟩∘⟨refl ⟩ [ g , idC ] ∘ i₁ ≈⟨ inject₁ ⟩ g ∎ -- Lemma 39: ▷ ∘ f* ≈ (▷ ∘ f)* ≈ f* ∘ ▷ module _ {X Y} (f : X ⇒ D₀ Y) where private helper : out ∘ [ f , extend' (▷ ∘ f) ] ∘ out ≈ [ out ∘ f , i₂ ∘ [ f , extend' (▷ ∘ f) ] ∘ out ] ∘ out helper = pullˡ ∘[] ○ (([]-cong₂ refl (extendlaw (▷ ∘ f) ○ ((([]-cong₂ (pullˡ laterlaw) refl) ⟩∘⟨refl) ○ sym (pullˡ ∘[])))) ⟩∘⟨refl) helper₁ : [ f , extend' (▷ ∘ f) ] ∘ out ≈ extend' f helper₁ = sym (extend'-unique f ([ f , extend' (▷ ∘ f) ] ∘ out) helper) ▷∘extendˡ : ▷ ∘ extend' f ≈ extend' (▷ ∘ f) ▷∘extendˡ = sym (begin extend' (▷ ∘ f) ≈⟨ introˡ (_≅_.isoˡ out-≅) ⟩ (out⁻¹ ∘ out) ∘ extend' (▷ ∘ f) ≈⟨ pullʳ (extendlaw (▷ ∘ f)) ⟩ out⁻¹ ∘ [ out ∘ ▷ ∘ f , i₂ ∘ extend' (▷ ∘ f) ] ∘ out ≈⟨ (refl⟩∘⟨ (([]-cong₂ (pullˡ laterlaw) refl) ○ (sym ∘[])) ⟩∘⟨refl) ⟩ out⁻¹ ∘ (i₂ ∘ [ f , extend' (▷ ∘ f) ]) ∘ out ≈⟨ (refl⟩∘⟨ (pullʳ helper₁)) ⟩ out⁻¹ ∘ i₂ ∘ extend' f ≈⟨ sym-assoc ⟩ ▷ ∘ extend' f ∎) ▷∘extend-comm : ▷ ∘ extend' f ≈ extend' f ∘ ▷ ▷∘extend-comm = sym (begin extend' f ∘ ▷ ≈⟨ introˡ (_≅_.isoˡ out-≅) ⟩ (out⁻¹ ∘ out) ∘ extend' f ∘ ▷ ≈⟨ pullʳ (pullˡ (extendlaw f)) ⟩ out⁻¹ ∘ ([ out ∘ f , i₂ ∘ extend' f ] ∘ out) ∘ ▷ ≈⟨ (refl⟩∘⟨ pullʳ laterlaw) ⟩ out⁻¹ ∘ [ out ∘ f , i₂ ∘ extend' f ] ∘ i₂ ≈⟨ (refl⟩∘⟨ inject₂) ○ sym-assoc ⟩ ▷ ∘ extend' f ∎) ▷∘extendʳ : extend' f ∘ ▷ ≈ extend' (▷ ∘ f) ▷∘extendʳ = (sym ▷∘extend-comm) ○ ▷∘extendˡ is-guarded : ∀ {X Y} (g : X ⇒ D₀ (Y + X)) → Set (ℓ ⊔ e) is-guarded {X} {Y} g = ∃[ h ] (i₁ +₁ idC) ∘ h ≈ out ∘ g guarded-unique : ∀ {X Y} (g : X ⇒ D₀ (Y + X)) (f i : X ⇒ D₀ Y) → is-guarded g → f ≈ extend' ([ now , f ]) ∘ g → i ≈ extend' ([ now , i ]) ∘ g → f ≈ i guarded-unique {X} {Y} g f i (h , guarded) eqf eqi = begin f ≈⟨ eqf ⟩ extend' ([ now , f ]) ∘ g ≈⟨ (sym (Terminal.!-unique (coalgebras Y) (record { f = extend' ([ now , f ]) ; commutes = begin out ∘ extend' ([ now , f ]) ≈⟨ extendlaw ([ now , f ]) ⟩ [ out ∘ [ now , f ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out ≈⟨ ([]-cong₂ ∘[] refl) ⟩∘⟨refl ⟩ [ [ out ∘ now , out ∘ f ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out ≈⟨ ([]-cong₂ ([]-cong₂ unitlaw (helper f eqf)) refl) ⟩∘⟨refl ⟩ [ [ i₁ , (idC +₁ extend' ([ now , f ])) ∘ h ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out ≈˘⟨ ([]-cong₂ ([]-cong₂ identityʳ refl) refl) ⟩∘⟨refl ⟩ [ [ i₁ ∘ idC , (idC +₁ extend' ([ now , f ])) ∘ h ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out ≈˘⟨ ([]-cong₂ ([]-cong₂ +₁∘i₁ refl) refl) ⟩∘⟨refl ⟩ [ [ (idC +₁ extend' ([ now , f ])) ∘ i₁ , (idC +₁ extend' ([ now , f ])) ∘ h ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out ≈˘⟨ ([]-cong₂ ∘[] +₁∘i₂) ⟩∘⟨refl ⟩ [ (idC +₁ extend' ([ now , f ])) ∘ [ i₁ , h ] , (idC +₁ extend' ([ now , f ])) ∘ i₂ ] ∘ out ≈˘⟨ pullˡ ∘[] ⟩ (idC +₁ extend' ([ now , f ])) ∘ [ [ i₁ , h ] , i₂ ] ∘ out ∎ }))) ⟩∘⟨refl ⟩ u (Terminal.! (coalgebras Y)) ∘ g ≈⟨ (Terminal.!-unique (coalgebras Y) (record { f = extend' ([ now , i ]) ; commutes = begin out ∘ extend' ([ now , i ]) ≈⟨ extendlaw ([ now , i ]) ⟩ [ out ∘ [ now , i ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈⟨ ([]-cong₂ ∘[] refl) ⟩∘⟨refl ⟩ [ [ out ∘ now , out ∘ i ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈⟨ ([]-cong₂ ([]-cong₂ unitlaw (helper i eqi)) refl) ⟩∘⟨refl ⟩ [ [ i₁ , (idC +₁ extend' ([ now , i ])) ∘ h ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈˘⟨ ([]-cong₂ ([]-cong₂ identityʳ refl) refl) ⟩∘⟨refl ⟩ [ [ i₁ ∘ idC , (idC +₁ extend' ([ now , i ])) ∘ h ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈˘⟨ ([]-cong₂ ([]-cong₂ +₁∘i₁ refl) refl) ⟩∘⟨refl ⟩ [ [ (idC +₁ extend' ([ now , i ])) ∘ i₁ , (idC +₁ extend' ([ now , i ])) ∘ h ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈˘⟨ ([]-cong₂ ∘[] +₁∘i₂) ⟩∘⟨refl ⟩ [ (idC +₁ extend' ([ now , i ])) ∘ [ i₁ , h ] , (idC +₁ extend' ([ now , i ])) ∘ i₂ ] ∘ out ≈˘⟨ pullˡ ∘[] ⟩ (idC +₁ extend' ([ now , i ])) ∘ [ [ i₁ , h ] , i₂ ] ∘ out ∎ })) ⟩∘⟨refl ⟩ extend' ([ now , i ]) ∘ g ≈⟨ sym eqi ⟩ i ∎ where helper : ∀ (f : X ⇒ D₀ Y) → f ≈ extend' ([ now , f ]) ∘ g → out ∘ f ≈ (idC +₁ extend' ([ now , f ])) ∘ h helper f eqf = begin out ∘ f ≈⟨ refl⟩∘⟨ eqf ⟩ out ∘ extend' ([ now , f ]) ∘ g ≈⟨ pullˡ (extendlaw ([ now , f ])) ⟩ ([ out ∘ [ now , f ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out) ∘ g ≈⟨ pullʳ (sym guarded) ⟩ [ out ∘ [ now , f ] , i₂ ∘ extend' ([ now , f ]) ] ∘ (i₁ +₁ idC) ∘ h ≈⟨ pullˡ []∘+₁ ⟩ [ (out ∘ [ now , f ]) ∘ i₁ , (i₂ ∘ extend' ([ now , f ])) ∘ idC ] ∘ h ≈⟨ ([]-cong₂ (pullʳ inject₁) identityʳ) ⟩∘⟨refl ⟩ [ out ∘ now , i₂ ∘ extend' ([ now , f ]) ] ∘ h ≈⟨ ([]-cong₂ (unitlaw ○ sym identityʳ) refl) ⟩∘⟨refl ⟩ (idC +₁ extend' ([ now , f ])) ∘ h ∎ out-law : ∀ {X Y} (f : X ⇒ Y) → out {Y} ∘ extend' (now ∘ f) ≈ (f +₁ extend' (now ∘ f)) ∘ out {X} out-law {X} {Y} f = begin out ∘ extend' (now ∘ f) ≈⟨ extendlaw (now ∘ f) ⟩ [ out ∘ now ∘ f , i₂ ∘ extend' (now ∘ f) ] ∘ out ≈⟨ ([]-cong₂ (pullˡ unitlaw) refl) ⟩∘⟨refl ⟩ (f +₁ extend' (now ∘ f)) ∘ out ∎ kleisli : KleisliTriple C kleisli = record { F₀ = D₀ ; unit = now ; extend = extend' ; identityʳ = identityʳ' ; identityˡ = extend'-unique now idC (id-comm ○ (sym ([]-unique (identityˡ ○ sym unitlaw) id-comm-sym)) ⟩∘⟨refl) ; assoc = assoc' ; sym-assoc = sym assoc' ; extend-≈ = extend-≈' } where open Terminal αf≈αg : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → α (alg f) ≈ α (alg g) αf≈αg {X} {Y} {f} {g} eq = []-cong₂ ([]-cong₂ (refl⟩∘⟨ refl⟩∘⟨ eq) refl ⟩∘⟨refl) refl alg-f≈alg-g : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → M._≅_ (F-Coalgebras (Y +-)) (alg f) (alg g) alg-f≈alg-g {X} {Y} {f} {g} eq = record { from = record { f = idC ; commutes = begin α (alg g) ∘ idC ≈⟨ identityʳ ⟩ α (alg g) ≈⟨ ⟺ (αf≈αg eq) ⟩ α (alg f) ≈˘⟨ elimˡ identity ⟩ (idC +₁ idC) ∘ α (alg f) ∎ } ; to = record { f = idC ; commutes = begin α (alg f) ∘ idC ≈⟨ identityʳ ⟩ α (alg f) ≈⟨ αf≈αg eq ⟩ α (alg g) ≈˘⟨ elimˡ identity ⟩ (idC +₁ idC) ∘ α (alg g) ∎ } ; iso = record { isoˡ = identity² ; isoʳ = identity² } } where open Functor (Y +-) using (identity) identityʳ' : ∀ {X Y : Obj} {f : X ⇒ D₀ Y} → extend' f ∘ now {X} ≈ f identityʳ' {X} {Y} {f} = begin extend' f ∘ now ≈⟨ insertˡ (_≅_.isoˡ out-≅) ⟩∘⟨refl ⟩ (out⁻¹ ∘ out ∘ extend' f) ∘ now ≈⟨ (refl⟩∘⟨ (extendlaw f)) ⟩∘⟨refl ⟩ (out⁻¹ ∘ [ out ∘ f , i₂ ∘ extend' f ] ∘ out) ∘ now ≈⟨ pullʳ (pullʳ unitlaw) ⟩ out⁻¹ ∘ [ out ∘ f , i₂ ∘ extend' f ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩ out⁻¹ ∘ out ∘ f ≈⟨ cancelˡ (_≅_.isoˡ out-≅) ⟩ f ∎ assoc' : ∀ {X Y Z : Obj} {g : X ⇒ D₀ Y} {h : Y ⇒ D₀ Z} → extend' (extend' h ∘ g) ≈ extend' h ∘ extend' g assoc' {X} {Y} {Z} {g} {h} = extend'-unique (extend' h ∘ g) (extend' h ∘ extend' g) (begin out ∘ extend' h ∘ extend' g ≈⟨ pullˡ (extendlaw h) ⟩ ([ out ∘ h , i₂ ∘ extend' h ] ∘ out) ∘ extend' g ≈⟨ pullʳ (extendlaw g) ⟩ [ out ∘ h , i₂ ∘ extend' h ] ∘ [ out ∘ g , i₂ ∘ extend' g ] ∘ out ≈⟨ pullˡ ∘[] ⟩ [ [ out ∘ h , i₂ ∘ extend' h ] ∘ out ∘ g , [ out ∘ h , i₂ ∘ extend' h ] ∘ i₂ ∘ extend' g ] ∘ out ≈⟨ []-cong₂ (pullˡ (⟺ (extendlaw h))) (pullˡ inject₂) ⟩∘⟨refl ⟩ [ (out ∘ extend' h) ∘ g , (i₂ ∘ extend' h) ∘ extend' g ] ∘ out ≈⟨ ([]-cong₂ assoc assoc) ⟩∘⟨refl ⟩ [ out ∘ extend' h ∘ g , i₂ ∘ extend' h ∘ extend' g ] ∘ out ∎) extend-≈' : ∀ {X} {Y} {f g : X ⇒ D₀ Y} → f ≈ g → extend' f ≈ extend' g extend-≈' {X} {Y} {f} {g} eq = begin u (! (coalgebras Y) {A = alg f }) ∘ i₁ {B = D₀ Y} ≈⟨ (!-unique (coalgebras Y) (record { f = (u (! (coalgebras Y) {A = alg g }) ∘ idC) ; commutes = begin α (⊤ (coalgebras Y)) ∘ u (! (coalgebras Y)) ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩ α (⊤ (coalgebras Y)) ∘ u (! (coalgebras Y)) ≈⟨ commutes (! (coalgebras Y)) ⟩ (idC +₁ u (! (coalgebras Y))) ∘ α (alg g) ≈˘⟨ Functor.F-resp-≈ (Y +-) identityʳ ⟩∘⟨ αf≈αg eq ⟩ (idC +₁ u (! (coalgebras Y)) ∘ idC) ∘ α (alg f) ∎ })) ⟩∘⟨refl ⟩ (u (! (coalgebras Y) {A = alg g }) ∘ idC) ∘ i₁ {B = D₀ Y} ≈⟨ identityʳ ⟩∘⟨refl ⟩ extend' g ∎ monad : Monad C monad = Kleisli⇒Monad C kleisli -- redundant but convenient to have functor : Endofunctor C functor = Monad.F monad