module Monad.Instance.K.StrongPreElgot {o ℓ e} (ambient : Ambient o ℓ e) (MK : MIK.MonadK ambient) where
open Ambient ambient
open MIK ambient
open MonadK MK
open import Algebra.Elgot cocartesian
open import Algebra.Elgot.Free cocartesian
open import Algebra.Elgot.Stable distributive
open import Monad.PreElgot ambient
open import Monad.Instance.K ambient
open import Monad.Instance.K.Commutative ambient MK
open import Monad.Instance.K.Strong ambient MK
open import Monad.Instance.K.PreElgot ambient MK
open import Category.Construction.StrongPreElgotMonads ambient
open import Category.Construction.ElgotAlgebras cocartesian
open Equiv
open HomReasoning
open MR C
open M C
K is the initial strong
pre-Elgot monad
isStrongPreElgot : IsStrongPreElgot KStrong
isStrongPreElgot = record
{ preElgot = isPreElgot
; strengthen-preserves = τ-comm
}
strongPreElgot : StrongPreElgotMonad
strongPreElgot = record
{ SM = KStrong
; isStrongPreElgot = isStrongPreElgot
}
isInitialStrongPreElgot : IsInitial StrongPreElgotMonads strongPreElgot
isInitialStrongPreElgot = record { ! = !′ ; !-unique = !-unique′ }
where
!′ : ∀ {A : StrongPreElgotMonad} → StrongPreElgotMonad-Morphism strongPreElgot A
!′ {A} = record
{ α = ntHelper (record { η = η' ; commute = commute })
; α-η = α-η
; α-μ = α-μ
; α-strength = α-strength
; α-preserves = λ {X} {B} f → Elgot-Algebra-Morphism.preserves (((freealgebras B) FreeObject.*) {A = record { A = T.F.F₀ B ; algebra = StrongPreElgotMonad.elgotalgebras A }} (T.η.η B))
}
where
open StrongPreElgotMonad A using (SM)
module SM = StrongMonad SM
open SM using (strengthen) renaming (M to T)
open RMonad (Monad⇒Kleisli C T) using (extend)
open monadK using () renaming (η to ηK; μ to μK)
open strongK using () renaming (strengthen to strengthenK)
open Elgot-Algebra-on using (#-resp-≈)
T-Alg : ∀ (X : Obj) → Elgot-Algebra
T-Alg X = record { A = T.F.₀ X ; algebra = StrongPreElgotMonad.elgotalgebras A }
K-Alg : ∀ (X : Obj) → Elgot-Algebra
K-Alg X = record { A = K.₀ X ; algebra = Elgot-Algebra.algebra (algebras X) }
η' : ∀ (X : Obj) → K.₀ X ⇒ T.F.₀ X
η' X = Elgot-Algebra-Morphism.h (_* {A = T-Alg X} (T.η.η X))
where open FreeObject (freealgebras X)
_#K = λ {B} {C} f → Elgot-Algebra._# (FreeObject.FX (freealgebras C)) {B} f
_#T = λ {B} {C} f → StrongPreElgotMonad.elgotalgebras._# A {B} {C} f
K₁-preserves : ∀ {X Y Z : Obj} (f : X ⇒ Y) (g : Z ⇒ K.₀ X + Z) → K.₁ f ∘ (g #K) ≈ ((K.₁ f +₁ idC) ∘ g) #K
K₁-preserves {X} {Y} {Z} f g = Elgot-Algebra-Morphism.preserves (((freealgebras X) FreeObject.*) {A = K-Alg Y} (ηK.η _ ∘ f))
μK-preserves : ∀ {X Y : Obj} (g : Y ⇒ K.₀ (K.₀ X) + Y) → μK.η X ∘ g #K ≈ ((μK.η X +₁ idC) ∘ g) #K
μK-preserves {X} g = Elgot-Algebra-Morphism.preserves (((freealgebras (K.₀ X)) FreeObject.*) {A = K-Alg X} idC)
η'-preserves : ∀ {X Y : Obj} (g : Y ⇒ K.₀ X + Y) → η' X ∘ g #K ≈ ((η' X +₁ idC) ∘ g) #T
η'-preserves {X} g = Elgot-Algebra-Morphism.preserves (((freealgebras X) FreeObject.*) {A = T-Alg X} (T.η.η X))
commute : ∀ {X Y : Obj} (f : X ⇒ Y) → η' Y ∘ K.₁ f ≈ T.F.₁ f ∘ η' X
commute {X} {Y} f = begin
η' Y ∘ K.₁ f ≈⟨ FreeObject.*-uniq
(freealgebras X)
{A = T-Alg Y}
(T.F.₁ f ∘ T.η.η X)
(record { h = η' Y ∘ K.₁ f ; preserves = pres₁ })
comm₁ ⟩
Elgot-Algebra-Morphism.h (FreeObject._* (freealgebras X) {A = T-Alg Y} (T.F.₁ f ∘ T.η.η _)) ≈⟨ sym (FreeObject.*-uniq
(freealgebras X)
{A = T-Alg Y}
(T.F.₁ f ∘ T.η.η X)
(record { h = T.F.₁ f ∘ η' X ; preserves = pres₂ })
(pullʳ (FreeObject.*-lift (freealgebras X) (T.η.η X)))) ⟩
T.F.₁ f ∘ η' X ∎
where
pres₁ : ∀ {Z} {g : Z ⇒ K.₀ X + Z} → (η' Y ∘ K.₁ f) ∘ g #K ≈ ((η' Y ∘ K.₁ f +₁ idC) ∘ g) #T
pres₁ {Z} {g} = begin
(η' Y ∘ K.₁ f) ∘ (g #K) ≈⟨ pullʳ (K₁-preserves f g) ⟩
η' Y ∘ (((K.₁ f +₁ idC) ∘ g) #K) ≈⟨ η'-preserves ((K.₁ f +₁ idC) ∘ g) ⟩
(((η' Y +₁ idC) ∘ (K.₁ f +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
((η' Y ∘ K.₁ f +₁ idC) ∘ g) #T ∎
pres₂ : ∀ {Z} {g : Z ⇒ K.₀ X + Z} → (T.F.₁ f ∘ η' X) ∘ g #K ≈ ((T.F.₁ f ∘ η' X +₁ idC) ∘ g) #T
pres₂ {Z} {g} = begin
(T.F.₁ f ∘ η' X) ∘ g #K ≈⟨ pullʳ (η'-preserves g) ⟩
T.F.₁ f ∘ ((η' X +₁ idC) ∘ g) #T ≈⟨ (sym (F₁⇒extend T f)) ⟩∘⟨refl ⟩
extend (T.η.η Y ∘ f) ∘ ((η' X +₁ idC) ∘ g) #T ≈⟨ sym (StrongPreElgotMonad.extend-preserves A ((η' X +₁ idC) ∘ g) (T.η.η Y ∘ f)) ⟩
(((extend (T.η.η Y ∘ f) +₁ idC) ∘ (η' X +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ ((F₁⇒extend T f) ⟩∘⟨refl) identity²)) ⟩
((T.F.₁ f ∘ η' X +₁ idC) ∘ g) #T ∎
comm₁ : (η' Y ∘ K.₁ f) ∘ _ ≈ T.F.₁ f ∘ T.η.η X
comm₁ = begin
(η' Y ∘ K.₁ f) ∘ _ ≈⟨ pullʳ (K₁η f) ⟩
η' Y ∘ ηK.η _ ∘ f ≈⟨ pullˡ (FreeObject.*-lift (freealgebras Y) (T.η.η Y)) ⟩
T.η.η Y ∘ f ≈⟨ NaturalTransformation.commute T.η f ⟩
T.F.₁ f ∘ T.η.η X ∎
α-η : ∀ {X : Obj} → η' X ∘ ηK.η X ≈ T.η.η X
α-η {X} = FreeObject.*-lift (freealgebras X) (T.η.η X)
α-μ : ∀ {X : Obj} → η' X ∘ μK.η X ≈ T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)
α-μ {X} = begin
η' X ∘ μK.η X ≈⟨ FreeObject.*-uniq
(freealgebras (K.₀ X))
{A = T-Alg X}
(η' X)
(record { h = η' X ∘ μK.η X ; preserves = pres₁ })
(cancelʳ monadK.identityʳ) ⟩
Elgot-Algebra-Morphism.h (((freealgebras (K.₀ X)) FreeObject.*) {A = T-Alg X} (η' X)) ≈⟨ sym (FreeObject.*-uniq
(freealgebras (K.₀ X))
{A = T-Alg X}
(η' X)
(record { h = T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) ; preserves = pres₂ })
comm) ⟩
T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) ∎
where
pres₁ : ∀ {Z} {g : Z ⇒ K.₀ (K.₀ X) + Z} → (η' X ∘ μK.η X) ∘ g #K ≈ ((η' X ∘ μK.η X +₁ idC) ∘ g) #T
pres₁ {Z} {g} = begin
(η' X ∘ μK.η X) ∘ (g #K) ≈⟨ pullʳ (μK-preserves g) ⟩
η' X ∘ ((μK.η X +₁ idC) ∘ g) #K ≈⟨ η'-preserves ((μK.η X +₁ idC) ∘ g) ⟩
(((η' X +₁ idC) ∘ (μK.η X +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
(((η' X ∘ μK.η X +₁ idC) ∘ g) #T) ∎
pres₂ : ∀ {Z} {g : Z ⇒ K.₀ (K.₀ X) + Z} → (T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ g #K ≈ ((T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) +₁ idC) ∘ g) #T
pres₂ {Z} {g} = begin
(T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ (g #K) ≈⟨ pullʳ (pullʳ (η'-preserves g)) ⟩
T.μ.η X ∘ T.F.₁ (η' X) ∘ (((η' (K.₀ X) +₁ idC) ∘ g) #T) ≈⟨ refl⟩∘⟨ ((sym (F₁⇒extend T (η' X))) ⟩∘⟨refl ○ sym (StrongPreElgotMonad.extend-preserves A ((η' (K.₀ X) +₁ idC) ∘ g) (T.η.η (T.F.F₀ X) ∘ η' X)) )⟩
T.μ.η X ∘ ((extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T ≈⟨ (sym (elimʳ T.F.identity)) ⟩∘⟨refl ⟩
extend idC ∘ ((extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T ≈⟨ sym (StrongPreElgotMonad.extend-preserves A ((extend (T.η.η (T.F.F₀ X) ∘ η' X) +₁ idC) ∘ (η' (K.₀ X) +₁ idC) ∘ g) idC) ⟩
(((extend idC +₁ idC) ∘ (extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ ((elimʳ T.F.identity) ⟩∘⟨ (F₁⇒extend T (η' X))) identity²)) ⟩
(((T.μ.η X ∘ T.F.₁ (η' X) +₁ idC) ∘ (η' _ +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ assoc identity²)) ⟩
(((T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) +₁ idC) ∘ g) #T) ∎
comm : (T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ ηK.η (K.₀ X) ≈ η' X
comm = begin
(T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ ηK.η (K.₀ X) ≈⟨ (refl⟩∘⟨ sym (commute (η' X))) ⟩∘⟨refl ⟩
(T.μ.η X ∘ η' _ ∘ K.₁ (η' X)) ∘ ηK.η (K.₀ X) ≈⟨ assoc ○ refl⟩∘⟨ (assoc ○ refl⟩∘⟨ sym (monadK.η.commute (η' X))) ⟩
T.μ.η X ∘ η' _ ∘ ηK.η (T.F.F₀ X) ∘ η' X ≈⟨ refl⟩∘⟨ (pullˡ (FreeObject.*-lift (freealgebras _) (T.η.η _))) ⟩
T.μ.η X ∘ T.η.η _ ∘ η' X ≈⟨ cancelˡ (Monad.identityʳ T) ⟩
η' X ∎
α-strength : ∀ {X Y : Obj} → η' (X × Y) ∘ strengthenK.η (X , Y) ≈ strengthen.η (X , Y) ∘ (idC ⁂ η' Y)
α-strength {X} {Y} = begin
η' (X × Y) ∘ strengthenK.η (X , Y) ≈⟨ IsStableFreeElgotAlgebra.♯-unique (stable Y) (T.η.η (X × Y)) (η' (X × Y) ∘ strengthenK.η (X , Y)) (sym pres₁) pres₃ ⟩
IsStableFreeElgotAlgebra.[ (stable Y) , T-Alg (X × Y) ]♯ (T.η.η (X × Y)) ≈⟨ sym (IsStableFreeElgotAlgebra.♯-unique (stable Y) (T.η.η (X × Y)) (strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) (sym pres₂) pres₄) ⟩
strengthen.η (X , Y) ∘ (idC ⁂ η' Y) ∎
where
pres₁ : (η' (X × Y) ∘ strengthenK.η (X , Y)) ∘ (idC ⁂ ηK.η Y) ≈ T.η.η (X × Y)
pres₁ = begin
(η' (X × Y) ∘ strengthenK.η (X , Y)) ∘ (idC ⁂ ηK.η Y) ≈⟨ pullʳ (τ-η (X , Y)) ⟩
η' (X × Y) ∘ ηK.η (X × Y) ≈⟨ α-η ⟩
T.η.η (X × Y) ∎
pres₂ : (strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) ∘ (idC ⁂ ηK.η Y) ≈ T.η.η (X × Y)
pres₂ = begin
(strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) ∘ (idC ⁂ ηK.η Y) ≈⟨ pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² α-η) ⟩
strengthen.η (X , Y) ∘ (idC ⁂ T.η.η Y) ≈⟨ SM.η-comm ⟩
T.η.η (X × Y) ∎
pres₃ : ∀ {Z : Obj} (h : Z ⇒ K.₀ Y + Z) → (η' (X × Y) ∘ strengthenK.η (X , Y)) ∘ (idC ⁂ h #K) ≈ ((η' (X × Y) ∘ strengthenK.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T
pres₃ {Z} h = begin
(η' (X × Y) ∘ strengthenK.η (X , Y)) ∘ (idC ⁂ h #K) ≈⟨ pullʳ (τ-comm h) ⟩
η' (X × Y) ∘ ((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #K ≈⟨ η'-preserves ((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) ⟩
((η' (X × Y) +₁ idC) ∘ (strengthenK.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
((η' (X × Y) ∘ strengthenK.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T ∎
pres₄ : ∀ {Z : Obj} (h : Z ⇒ K.₀ Y + Z) → (strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) ∘ (idC ⁂ h #K) ≈ ((strengthen.η (X , Y) ∘ (idC ⁂ η' Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T
pres₄ {Z} h = begin
(strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) ∘ (idC ⁂ h #K) ≈⟨ pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² (η'-preserves h)) ⟩
strengthen.η (X , Y) ∘ (idC ⁂ ((η' Y +₁ idC) ∘ h) #T) ≈⟨ StrongPreElgotMonad.strengthen-preserves A ((η' Y +₁ idC) ∘ h) ⟩
((strengthen.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (η' Y +₁ idC) ∘ h)) #T ≈⟨ sym (#-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (refl⟩∘⟨ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² refl)))) ⟩
(((strengthen.η (X , Y) +₁ idC) ∘ (distributeˡ⁻¹ ∘ (idC ⁂ (η' Y +₁ idC))) ∘ (idC ⁂ h)) #T) ≈⟨ sym (#-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (refl⟩∘⟨ (pullˡ ((+₁-cong₂ refl (sym (⟨⟩-unique id-comm id-comm))) ⟩∘⟨refl ○ distributeˡ⁻¹-natural idC (η' Y) idC)))) ⟩
((strengthen.η (X , Y) +₁ idC) ∘ ((idC ⁂ η' Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
((strengthen.η (X , Y) ∘ (idC ⁂ η' Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T ∎
!-unique′ : ∀ {A : StrongPreElgotMonad} (f : StrongPreElgotMonad-Morphism strongPreElgot A) → StrongPreElgotMonad-Morphism.α (!′ {A = A}) ≃ StrongPreElgotMonad-Morphism.α f
!-unique′ {A} f {X} = sym (FreeObject.*-uniq
(freealgebras X)
{A = record { A = T.F.F₀ X ; algebra = StrongPreElgotMonad.elgotalgebras A }}
(T.η.η X)
(record { h = α.η X ; preserves = α-preserves _ })
α-η)
where
open StrongPreElgotMonad-Morphism f using (α; α-η; α-preserves)
open StrongPreElgotMonad A using (SM)
open StrongMonad SM using () renaming (M to T)