bsc-leon-vatthauer/Monad/ElgotMonad.agda

128 lines
8.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

open import Level
open import Categories.Category.Core
open import Categories.Category.Extensive.Bundle
open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian
open import Categories.Category.Cartesian
open import Categories.Category.Extensive
open import ElgotAlgebra
import Categories.Morphism.Reasoning as MR
module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
open HomReasoning
open Cocartesian (Extensive.cocartesian extensive)
open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
open BinaryProducts products hiding (η)
open MR C
open Equiv
open import Categories.Monad
open import Categories.Functor
record IsPreElgot (T : Monad C) : Set (o e) where
open Monad T
open Functor F renaming (F₀ to T₀; F₁ to T₁)
-- every TX needs to be equipped with an elgot algebra structure
field
elgotalgebras : {X} Elgot-Algebra-on ED (T₀ X)
module elgotalgebras {X} = Elgot-Algebra-on (elgotalgebras {X})
-- with the following associativity
field
assoc : {X Y Z} (f : Z T₀ X + Z) (h : X T₀ Y)
elgotalgebras._# (((μ.η _ T₁ h) +₁ idC) f) (μ.η _ T₁ h) (elgotalgebras._# {X}) f
record PreElgotMonad : Set (o e) where
field
T : Monad C
isPreElgot : IsPreElgot T
open IsPreElgot isPreElgot public
record IsElgot (T : Monad C) : Set (o e) where
open Monad T
open Functor F renaming (F₀ to T₀; F₁ to T₁)
-- iteration operator
field
_† : {X Y} X T₀ (Y + X) X T₀ Y
†-resp-≈ : {X Y} {f g : X T₀ (Y + X)} f g f g
-- laws
field
Fixpoint : {X Y} {f : X T₀ (Y + X)}
f (μ.η _ T₁ [ η.η _ , f ]) f
Naturality : {X Y Z} {f : X T₀ (Y + X)} {g : Y T₀ Z}
(μ.η _ T₁ g) f ((μ.η _ T₁ [ (T₁ i₁) g , η.η _ i₂ ]) f)
Codiagonal : {X Y} {f : X T₀ ((Y + X) + X)}
(T₁ [ idC , i₂ ] f ) f
Uniformity : {X Y Z} {f : X T₀ (Y + X)} {g : Z T₀ (Y + Z)} {h : Z X}
f h (T₁ (idC +₁ h)) g f h g
record ElgotMonad : Set (o e) where
field
T : Monad C
isElgot : IsElgot T
open IsElgot isElgot public
-- elgot monads are pre-elgot
Elgot⇒PreElgot : ElgotMonad PreElgotMonad
Elgot⇒PreElgot EM = record
{ T = T
; isPreElgot = record
{ elgotalgebras = λ {X} record
{ _# = λ f ([ T₁ i₁ , η.η _ i₂ ] f)
; #-Fixpoint = λ {Y} {f} begin
([ T₁ i₁ , η.η _ i₂ ] f) ≈⟨ Fixpoint
(μ.η _ T₁ [ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ]) ([ T₁ i₁ , η.η _ i₂ ] f) ≈⟨ pullˡ ∘[]
[ (μ.η _ T₁ [ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ]) T₁ i₁
, (μ.η _ T₁ [ η.η _
, ([ T₁ i₁ , η.η _ i₂ ] f) ]) η.η _ i₂ ] f ≈˘⟨ []-cong₂
(pushʳ (homomorphism))
(pushˡ (pushʳ (η.commute _)))
⟩∘⟨refl
[ μ.η _ T₁ ([ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ] i₁)
, (μ.η _ (η.η _ [ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ])) i₂ ] f ≈⟨ []-cong₂ (∘-resp-≈ʳ (F-resp-≈ inject₁)) (pullʳ (pullʳ inject₂)) ⟩∘⟨refl
[ μ.η _ (T₁ (η.η _))
, μ.η _ η.η _ ([ T₁ i₁ , η.η _ i₂ ] f) ] f ≈⟨ []-cong₂ (T.identityˡ) (cancelˡ T.identityʳ) ⟩∘⟨refl
[ idC , ([ T₁ i₁ , η.η _ i₂ ] f) ] f
; #-Uniformity = λ {X} {Y} {f} {g} {h} H sym (Uniformity (begin
([ T₁ i₁ , η.η _ i₂ ] g) h ≈˘⟨ pushʳ H
[ T₁ i₁ , η.η _ i₂ ] (idC +₁ h) f ≈⟨ pullˡ []∘+₁
[ T₁ i₁ idC , (η.η _ i₂) h ] f ≈⟨ []-cong₂ (trans identityʳ (F-resp-≈ (sym identityʳ))) assoc ⟩∘⟨refl
[ T₁ (i₁ idC) , η.η _ i₂ h ] f ≈˘⟨ []-cong₂ (F-resp-≈ +₁∘i₁) (pullʳ +₁∘i₂) ⟩∘⟨refl
[ T₁ ((idC +₁ h) i₁) , (η.η _ (idC +₁ h)) i₂ ] f ≈⟨ []-cong₂ homomorphism ( pushˡ (η.commute _)) ⟩∘⟨refl
[ T₁ (idC +₁ h) T₁ i₁ , T₁ (idC +₁ h) η.η _ i₂ ] f ≈˘⟨ pullˡ ∘[]
T₁ (idC +₁ h) [ T₁ i₁ , η.η _ i₂ ] f ))
; #-Folding = λ {X} {Y} {f} {h} begin
([ T₁ i₁ , η.η _ i₂ ] ((([ T₁ i₁ , η.η _ i₂ ] f) ) +₁ h)) ≈⟨ †-resp-≈ []∘+₁
[ T₁ i₁ ([ T₁ i₁ , η.η _ i₂ ] f) , (η.η _ i₂) h ] ≈⟨ {! !}
{! !} ≈⟨ {! !}
[ [ T₁ i₁ idC , (η.η _ i₂) i₁ ] f , (η.η _ i₂) h ] ≈˘⟨ †-resp-≈ ([]-cong₂ (pullˡ []∘+₁) (pullˡ inject₂))
[ [ T₁ i₁ , η.η _ i₂ ] (idC +₁ i₁) f , [ T₁ i₁ , η.η _ i₂ ] i₂ h ] ≈˘⟨ †-resp-≈ ∘[]
([ T₁ i₁ , η.η _ i₂ ] [ (idC +₁ i₁) f , i₂ h ])
; #-resp-≈ = λ fg †-resp-≈ (∘-resp-≈ʳ fg)
}
; assoc = λ {X} {Y} {Z} f h begin
-- TODO tidy up by moving doing sym outside, apply Naturality and then do `†-resp-≈ pullˡ` once.
([ T₁ i₁ , η.η _ i₂ ] (μ.η Y T₁ h +₁ idC) f) ≈⟨ †-resp-≈ (pullˡ []∘+₁)
(([ T₁ i₁ μ.η _ T₁ h , (η.η _ i₂) idC ] f)) ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-cong₂ assoc (sym identityʳ)))
([ (T₁ i₁ μ.η _) T₁ h , η.η _ i₂ ] f) ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-congʳ (pullˡ (μ.commute _))))
([ μ.η _ T₁ (T₁ i₁) T₁ h , η.η _ i₂ ] f) ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ʳ homomorphism) (cancelˡ T.identityʳ)))
([ μ.η _ T₁ (T₁ i₁ h) , μ.η _ η.η _ η.η _ i₂ ] f) ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ʳ (F-resp-≈ inject₁)) (∘-resp-≈ʳ (pullʳ inject₂))))
([ μ.η _ T₁ ([ T₁ i₁ h , η.η _ i₂ ] i₁) , μ.η _ (η.η _ [ T₁ i₁ h , η.η _ i₂ ]) i₂ ] f) ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-cong₂ (pullʳ (sym homomorphism)) (pullʳ (pullˡ (η.sym-commute _)))))
([ (μ.η _ T₁ [ T₁ i₁ h , η.η _ i₂ ]) T₁ i₁ , (μ.η _ T₁ [ T₁ i₁ h , η.η _ i₂ ]) η.η _ i₂ ] f) ≈˘⟨ †-resp-≈ (pullˡ ∘[])
((μ.η _ T₁ [ T₁ i₁ h , η.η _ i₂ ]) [ T₁ i₁ , η.η _ i₂ ] f) ≈˘⟨ Naturality
(μ.η Y T₁ h) ([ T₁ i₁ , η.η _ i₂ ] f)
}
}
where
open ElgotMonad EM
module T = Monad T
open T using (F; η; μ)
open Functor F renaming (F₀ to T₀; F₁ to T₁)