bsc-leon-vatthauer/Monad/ElgotMonad.agda

129 lines
8.6 KiB
Agda
Raw Normal View History

2023-08-16 17:29:13 +02:00
open import Level
open import Categories.Category.Core
open import Categories.Category.Extensive.Bundle
open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian
open import Categories.Category.Cartesian
open import Categories.Category.Extensive
open import ElgotAlgebra
import Categories.Morphism.Reasoning as MR
module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
open HomReasoning
open Cocartesian (Extensive.cocartesian extensive)
open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
open BinaryProducts products hiding (η)
open MR C
open Equiv
open import Categories.Monad
open import Categories.Functor
record IsPreElgot (T : Monad C) : Set (o e) where
open Monad T
open Functor F renaming (F₀ to T₀; F₁ to T₁)
-- every TX needs to be equipped with an elgot algebra structure
field
elgotalgebras : {X} Elgot-Algebra-on ED (T₀ X)
module elgotalgebras {X} = Elgot-Algebra-on (elgotalgebras {X})
-- with the following associativity
field
2023-08-17 18:07:26 +02:00
assoc : {X Y Z} (f : Z T₀ X + Z) (h : X T₀ Y)
elgotalgebras._# (((μ.η _ T₁ h) +₁ idC) f) (μ.η _ T₁ h) (elgotalgebras._# {X}) f
2023-08-16 17:29:13 +02:00
record PreElgotMonad : Set (o e) where
field
T : Monad C
isPreElgot : IsPreElgot T
open IsPreElgot isPreElgot public
record IsElgot (T : Monad C) : Set (o e) where
open Monad T
open Functor F renaming (F₀ to T₀; F₁ to T₁)
-- iteration operator
field
_† : {X Y} X T₀ (Y + X) X T₀ Y
2023-08-17 18:07:26 +02:00
†-resp-≈ : {X Y} {f g : X T₀ (Y + X)} f g f g
2023-08-16 17:29:13 +02:00
-- laws
field
2023-08-17 18:07:26 +02:00
Fixpoint : {X Y} {f : X T₀ (Y + X)}
f (μ.η _ T₁ [ η.η _ , f ]) f
Naturality : {X Y Z} {f : X T₀ (Y + X)} {g : Y T₀ Z}
(μ.η _ T₁ g) f ((μ.η _ T₁ [ (T₁ i₁) g , η.η _ i₂ ]) f)
Codiagonal : {X Y} {f : X T₀ ((Y + X) + X)}
(T₁ [ idC , i₂ ] f ) f
Uniformity : {X Y Z} {f : X T₀ (Y + X)} {g : Z T₀ (Y + Z)} {h : Z X}
f h (T₁ (idC +₁ h)) g f h g
2023-08-16 17:29:13 +02:00
record ElgotMonad : Set (o e) where
field
T : Monad C
isElgot : IsElgot T
open IsElgot isElgot public
-- elgot monads are pre-elgot
Elgot⇒PreElgot : ElgotMonad PreElgotMonad
Elgot⇒PreElgot EM = record
{ T = T
; isPreElgot = record
{ elgotalgebras = λ {X} record
{ _# = λ f ([ T₁ i₁ , η.η _ i₂ ] f)
; #-Fixpoint = λ {Y} {f} begin
2023-08-17 18:07:26 +02:00
([ T₁ i₁ , η.η _ i₂ ] f) ≈⟨ Fixpoint
2023-08-16 17:29:13 +02:00
(μ.η _ T₁ [ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ]) ([ T₁ i₁ , η.η _ i₂ ] f) ≈⟨ pullˡ ∘[]
[ (μ.η _ T₁ [ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ]) T₁ i₁
2023-08-17 18:07:26 +02:00
, (μ.η _ T₁ [ η.η _
, ([ T₁ i₁ , η.η _ i₂ ] f) ]) η.η _ i₂ ] f ≈˘⟨ []-cong₂
(pushʳ (homomorphism))
(pushˡ (pushʳ (η.commute _)))
⟩∘⟨refl
2023-08-16 17:29:13 +02:00
[ μ.η _ T₁ ([ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ] i₁)
2023-08-17 18:07:26 +02:00
, (μ.η _ (η.η _ [ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ])) i₂ ] f ≈⟨ []-cong₂ (∘-resp-≈ʳ (F-resp-≈ inject₁)) (pullʳ (pullʳ inject₂)) ⟩∘⟨refl
2023-08-16 17:29:13 +02:00
[ μ.η _ (T₁ (η.η _))
2023-08-17 18:07:26 +02:00
, μ.η _ η.η _ ([ T₁ i₁ , η.η _ i₂ ] f) ] f ≈⟨ []-cong₂ (T.identityˡ) (cancelˡ T.identityʳ) ⟩∘⟨refl
[ idC , ([ T₁ i₁ , η.η _ i₂ ] f) ] f
; #-Uniformity = λ {X} {Y} {f} {g} {h} H sym (Uniformity (begin
([ T₁ i₁ , η.η _ i₂ ] g) h ≈˘⟨ pushʳ H
[ T₁ i₁ , η.η _ i₂ ] (idC +₁ h) f ≈⟨ pullˡ []∘+₁
[ T₁ i₁ idC , (η.η _ i₂) h ] f ≈⟨ []-cong₂ (trans identityʳ (F-resp-≈ (sym identityʳ))) assoc ⟩∘⟨refl
[ T₁ (i₁ idC) , η.η _ i₂ h ] f ≈˘⟨ []-cong₂ (F-resp-≈ +₁∘i₁) (pullʳ +₁∘i₂) ⟩∘⟨refl
[ T₁ ((idC +₁ h) i₁) , (η.η _ (idC +₁ h)) i₂ ] f ≈⟨ []-cong₂ homomorphism ( pushˡ (η.commute _)) ⟩∘⟨refl
[ T₁ (idC +₁ h) T₁ i₁ , T₁ (idC +₁ h) η.η _ i₂ ] f ≈˘⟨ pullˡ ∘[]
T₁ (idC +₁ h) [ T₁ i₁ , η.η _ i₂ ] f ))
; #-Folding = λ {X} {Y} {f} {h} begin
([ T₁ i₁ , η.η _ i₂ ] ((([ T₁ i₁ , η.η _ i₂ ] f) ) +₁ h)) ≈⟨ †-resp-≈ []∘+₁
[ T₁ i₁ ([ T₁ i₁ , η.η _ i₂ ] f) , (η.η _ i₂) h ] ≈⟨ {! !}
{! !} ≈⟨ {! !}
[ [ T₁ i₁ idC , (η.η _ i₂) i₁ ] f , (η.η _ i₂) h ] ≈˘⟨ †-resp-≈ ([]-cong₂ (pullˡ []∘+₁) (pullˡ inject₂))
[ [ T₁ i₁ , η.η _ i₂ ] (idC +₁ i₁) f , [ T₁ i₁ , η.η _ i₂ ] i₂ h ] ≈˘⟨ †-resp-≈ ∘[]
([ T₁ i₁ , η.η _ i₂ ] [ (idC +₁ i₁) f , i₂ h ])
; #-resp-≈ = λ fg †-resp-≈ (∘-resp-≈ʳ fg)
}
; assoc = λ {X} {Y} {Z} f h begin
-- TODO tidy up by moving doing sym outside, apply Naturality and then do `†-resp-≈ pullˡ` once.
([ T₁ i₁ , η.η _ i₂ ] (μ.η Y T₁ h +₁ idC) f) ≈⟨ †-resp-≈ (pullˡ []∘+₁)
(([ T₁ i₁ μ.η _ T₁ h , (η.η _ i₂) idC ] f)) ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-cong₂ assoc (sym identityʳ)))
([ (T₁ i₁ μ.η _) T₁ h , η.η _ i₂ ] f) ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-congʳ (pullˡ (μ.commute _))))
([ μ.η _ T₁ (T₁ i₁) T₁ h , η.η _ i₂ ] f) ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ʳ homomorphism) (cancelˡ T.identityʳ)))
([ μ.η _ T₁ (T₁ i₁ h) , μ.η _ η.η _ η.η _ i₂ ] f) ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ʳ (F-resp-≈ inject₁)) (∘-resp-≈ʳ (pullʳ inject₂))))
([ μ.η _ T₁ ([ T₁ i₁ h , η.η _ i₂ ] i₁) , μ.η _ (η.η _ [ T₁ i₁ h , η.η _ i₂ ]) i₂ ] f) ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-cong₂ (pullʳ (sym homomorphism)) (pullʳ (pullˡ (η.sym-commute _)))))
([ (μ.η _ T₁ [ T₁ i₁ h , η.η _ i₂ ]) T₁ i₁ , (μ.η _ T₁ [ T₁ i₁ h , η.η _ i₂ ]) η.η _ i₂ ] f) ≈˘⟨ †-resp-≈ (pullˡ ∘[])
((μ.η _ T₁ [ T₁ i₁ h , η.η _ i₂ ]) [ T₁ i₁ , η.η _ i₂ ] f) ≈˘⟨ Naturality
(μ.η Y T₁ h) ([ T₁ i₁ , η.η _ i₂ ] f)
2023-08-16 17:29:13 +02:00
}
}
where
open ElgotMonad EM
module T = Monad T
2023-08-17 18:07:26 +02:00
open T using (F; η; μ)
2023-08-16 17:29:13 +02:00
open Functor F renaming (F₀ to T₀; F₁ to T₁)